【题目】已知点是抛物线的焦点,若点在抛物线上,且
求抛物线的方程;
动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,.
【解析】
求得抛物线的焦点和准线方程,运用抛物线的定义可得的坐标,代入抛物线方程,解得,进而得到抛物线的方程;在轴上假设存在定点其中,使得与向量共线,可得轴平分,设,,联立和,根据恒成立,运用韦达定理和直线的斜率公式,化简整理可得的方程,求得,可得结论.
抛物线C:的焦点为,
准线方程为,
即有,即,
则,解得,
则抛物线的方程为;
在x轴上假设存在定点其中,
使得与向量共线,
由,均为单位向量,且它们的和向量与共线,
可得x轴平分,
设,,
联立和,
得,
恒成立.
,
设直线DA、DB的斜率分别为,,
则由得,
,
,
联立,得,
故存在满足题意,
综上,在x轴上存在一点,使得x轴平分,
即与向量共线.
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点的直线交抛物线于两点,线段的中点为.
(1)求动点的轨迹的方程;
(2)经过坐标原点的直线与轨迹交于两点,与抛物线交于点(),若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在距离车站( )
A.4kmB.5kmC.6kmD.7km
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对称轴为坐标轴的椭圆的焦点为,,在上.
(1)求椭圆的方程;
(2)设不过原点的直线与椭圆交于,两点,且直线,,的斜率依次成等比数列,则当的面积为时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.
(1)求样本容量和频率分布直方图中的的值;
(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生,求所抽取的名学生中至少有一人得分在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)若对任意,且,都有,求实数的取值范围;
(2)在第(1)问求出的实数的范围内,若存在一个与有关的负数,使得对任意时恒成立,求的最小值及相应的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com