精英家教网 > 高中数学 > 题目详情
3.已知A、B为椭圆$\frac{x^2}{4}+{y^2}$=1和双曲线$\frac{x^2}{4}-{y^2}$=1的公共顶点,P、Q分别为双曲线和椭圆上不同于两点A、B的动点,且有$\overrightarrow{PA}$+$\overrightarrow{PB}$=λ($\overrightarrow{OA}$+$\overrightarrow{QB}$)(λ∈R,|λ|>1),设直线AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4,则k1+k2+k3+k4的值(  )
A.大于0B.等于0
C.小于0D.大于0,等于0,小于0都有可能

分析 设P(x1,y1)、Q(x2,y2),利用斜率公式得到k1+k2=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{x}_{1}}{2{y}_{1}}$;同理可得k3+k4=-$\frac{{x}_{2}}{2{y}_{2}}$,结合O、P、Q三点共线即可得出k1+k2+k3+k4的值.

解答 解:由题意,O、P、Q三点共线.
设P(x1,y1)、Q(x2,y2),
点P在双曲线$\frac{x^2}{4}-{y^2}$=1上,有x12-4=4y12
所以k1+k2=$\frac{{y}_{1}}{{x}_{1}+2}$+$\frac{{y}_{1}}{{x}_{1}-2}$=$\frac{{x}_{1}}{2{y}_{1}}$.    ①
又由点Q在椭圆$\frac{x^2}{4}+{y^2}$=1上,有x22-4=-2y22
同理可得k3+k4=-$\frac{{x}_{2}}{2{y}_{2}}$②
∵O、P、Q三点共线.
∴$\frac{{x}_{1}}{{y}_{1}}$=$\frac{{x}_{2}}{{y}_{2}}$.
由①、②得k1+k2+k3+k4=0.
故选B.

点评 本小题主要考查椭圆的几何性质、双曲线的几何性质、圆锥曲线的综合等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知点D为AB边的中点,点N在线段CD上,且$\overrightarrow{CN}$=2$\overrightarrow{ND}$,若$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ$\overrightarrow{AB}$,则λ=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>1\\ \frac{1}{{{2^{x-1}}}},x≤1\end{array}\right.$,则f(f(4))=(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若$\frac{5π}{2}$≤α≤$\frac{7π}{2}$,则$\sqrt{1+sinα}$+$\sqrt{1-sinα}$=$\sqrt{2-cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的不等式ax2+x+b>0的解集为(1,2),则a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点与抛物线y2=8x的焦点相同,且经过点(2,3).
(Ⅰ)求双曲线C的标准方程和其渐近线方程;
(Ⅱ)设直线l经过点(0,-1),且斜率为k.求直线l与双曲线C有两个公共点时k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线l:y=$\sqrt{3}$x与圆C:x2-4x+y2=0相交于A,B两点,则弦长|AB|=(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若直线y=kx+1与双曲线x2-y2=2的左支交于不同的两点,则k的取值范围是(1,$\frac{\sqrt{6}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A、B、C的对边长分别为a,b,c,若b2+c2-a2=bc
(1)求角A的大小;
(2)若$a=\sqrt{3}$,求BC边上的中线AM的最大值.

查看答案和解析>>

同步练习册答案