精英家教网 > 高中数学 > 题目详情
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ,且tanθ=
(Ⅰ)证明:平面ACD⊥平面ADE;
(Ⅱ)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式;
(Ⅲ)当V(x)取得最大值时,求二面角D-AB-C的大小。
(Ⅰ)证明:∵四边形DCBE为平行四边形,
∴CD∥BE,BC∥DE,
∵DC⊥平面ABC,BC平面ABC,
∴DC⊥BC,
∵AB是圆O的直径,
∴BC⊥AC且DC∩AC=C,
∴BC⊥平面ADC,
∵DE∥BC,∴DE⊥平面ADC,
又∵DE平面ADE,
∴平面ACD⊥平面ADE。
(Ⅱ)解:∵DC⊥平面ABC,
∴BE⊥平面ABC,
∴∠EAB为AE与平面ABC所成的角,即∠EAB =θ,
在Rt△ABE中,由,AB=2得
在Rt△ABC中,
(0<x<2),

(0<x<2)。

(Ⅲ)解:由(Ⅱ)知0<x<2,要取得最大值,
当且仅当取得最大值,
当且仅当
时,“=”成立,
∴当取得最大值时,,这时△ACB为等腰直角三角形,
连结CO,DO,
∵AC=BC,DC=DC,

∴AD=DB,
又∵O为AB的中点,
∴CO⊥AB,DO⊥AB,
∴∠DOC为二面角D-AB-C的平面角,
在Rt△DCO中,∵

∴∠DOC =60°,
即当取得最大值时,二面角D-AB-C为60°。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
3
2
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC内接于圆柱的底面圆O,AB是圆O的直径,AB=2,BC=1,DC、EB是两条母线,且 tan∠EAB=
3
2

(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•沈阳二模)选修4-1:几何证明选讲
如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过点A的直线,且∠PAC=∠ABC.
(1)求证:PA是⊙O的切线;
(2)如果弦CD交AB于点E,AC=8,CE:ED=6:5,AE:EB=2:3,求直径AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E,若AB=6,BC=4,则AE的长为(  )

查看答案和解析>>

同步练习册答案