【题目】如图,A,B,C的坐标分别为(﹣ ,0),( ,0),(m,n),G,O′,H分别为△ABC的重心,外心,垂心.
(1)写出重心G的坐标;
(2)求外心O′,垂心H的坐标;
(3)求证:G,H,O′三点共线,且满足|GH|=2|OG′|.
【答案】
(1)解:重心G的坐标为( , )
(2)解:设外心O′,垂心H的坐标为(0,a),(m,b),BC的中点为D,
∵A,B,C的坐标分别为(﹣ ,0),( ,0),(m,n),
∴ =(m﹣ ,n),D的坐标为( + , ),
∴ =( + , ﹣a), =(m+ ,b),
由 ,
则 ,
即 ,
∴外心O′的坐标为(0, ),垂心H的坐标为(m, )
(3)证明:由(1)(2)可知 =( , ),
=( , ),
得 =2 ,
∴G,H,O′三点共线,且满足|GH|=2|OG′|
【解析】(1)根据重心坐标公式即可求出,(2)设外心O′,垂心H的坐标为(0,a),(m,b),根据向量的坐标运算得到 =(m﹣ ,n),D的坐标为( + , ), =( + , ﹣a), =(m+ ,b),由题意得到由 ,化简计算得到即 ,即可求出外心O′,垂心H的坐标;(3)根据向量的坐标运算得到 =2 ,根据向量的共线条件即可证明.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为 ,两焦点之间的距离为4.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作直线交抛物线y2=4x于A,B两点,求证:OA⊥OB(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+a)ex的极值点为﹣a﹣1,其中k,a∈R,且a≠0.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a﹣2|x平行,求l的方程;
(2)若a∈[1,2],函数f(x)在(b﹣ea , 2)上为增函数,求证:e2﹣3≤b<ea+2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某街道居委会拟在EF地段的居民楼正南方向的空白地段AE上建一个活动中心,其中AE=30米.活动中心东西走向,与居民楼平行.从东向西看活动中心的截面图的下部分是长方形ABCD,上部分是以DC为直径的半圆.为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE不超过2.5米,其中该太阳光线与水平线的夹角θ满足 .
(1)若设计AB=18米,AD=6米,问能否保证上述采光要求?
(2)在保证上述采光要求的前提下,如何设计AB与AD的长度,可使得活动中心的截面面积最大?(注:计算中π取3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数f(x)=sin(x﹣)sin(x+),有下列命题:
①此函数可以化为f(x)=﹣sin(2x+);
②函数f(x)的最小正周期是π,其图象的一个对称中心是( , 0);
③函数f(x)的最小值为﹣ , 其图象的一条对称轴是x=;
④函数f(x)的图象向右平移个单位后得到的函数是偶函数;
⑤函数f(x)在区间(﹣ , 0)上是减函数.
其中所有正确的命题的序号个数是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为9元,被随机分配为1.49元,1.31元,2.19元,3.40元,0.61元,共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com