分析 利用二次不等式的解法求出集合A、C,分式不等式的解法求出集合B,然后求解即可.
解答 解:A={x|x2-x-2≥0}={x|x≤-1或x≥2},
B={x|$\frac{x+2}{4-x}$≥0}={x|-2≤x<4},
C={x|x2-5x+4<0}={x|1<x<4},
则A∩B={x|-2≤x≤-1或2≤x<4},
A∪C={x|x≤-1或x>1},
(∁RB)∩C={x|x≤-1或x≥2}∩{x|1<x<4}={x|2≤x<4},
(∁RA)∪(∁RC)={x|-1<x<2}∪{x|x≤1或x≥4}={x|-1<x<2或x≥4}.
点评 本题考查不等式的解法,集合的交并补的运算,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | 9 | B. | 18 | C. | $\frac{9}{π}$ | D. | $\frac{18}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com