精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(cosλθ,cos(10﹣λ)θ), =(sin(10﹣λ)θ,sinλθ),λ、θ∈R.
(1)求 + 的值;
(2)若 ,求θ;
(3)若θ= ,求证:

【答案】
(1)

解:∵| |= ,| |=

| |2+| |2=2


(2)

解:∵

∴cosλθsin(10﹣λ)θ+cos(10﹣λ) θsinλθ=0

∴sin((10﹣λ) θ+λθ)=0,

∴sin10θ=0

∴10θ=kπ,k∈Z,

∴θ= ,k∈Z


(3)

解:∵θ= ,cosλθsinλθ﹣cos(10﹣λ) θsin[(10﹣λ) θ]

=cos sin ﹣cos( )sin(

=cos sin ﹣sin cos =0,


【解析】(1)由向量的数量积的坐标表示可求| |,| |,代入即可求解(2)由 ,利用向量数量积的性质的坐标表示可得cosλθsin(10﹣λ)θ+cos(10﹣λ) θsinλθ=0,整理可求θ(3)要证明 ,根据向量平行的坐标表示,只要证明cosλθsinλθ﹣cos(10﹣λ) θsin[(10﹣λ) θ]=0即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax﹣3
(1)若函数在f(x)的单调递减区间(﹣∞,2],求函数f(x)在区间[3,5]上的最大值.
(2)若函数在f(x)在单区间(﹣∞,2]上是单调递减,求函数f(1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,前项和.

(1)求的取值范围;

(2)设,记的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数y= 的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点且离心率.

1)求椭圆的方程;

(2)若直线与椭圆交于不同的两点且线段的垂直平分线过定点的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为奇函数.
(1)求实数m的值;
(2)用定义证明函数f(x)在区间(0,+∞)上为单调减函数;
(3)若关于x的不等式f(x)+a<0对区间[1,3]上的任意实数x都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点,将△ADE沿DE折起,点A,F折起后分别为点A′,F′,得到四棱锥A′﹣BCDE.给出下列几个结论:
①A′,B,C,F′四点共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,则CE⊥A′D;
④四棱锥A′﹣BCDE体积的最大值为
其中正确的是(填上所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:

每件A产品

每件B产品

研制成本、搭载试验费用之和(万元)

20

30

产品重量(千克)

10

5

预计收益(万元)

80

60

已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面积是 ,求AB.

查看答案和解析>>

同步练习册答案