精英家教网 > 高中数学 > 题目详情
10.已知角α是钝角,且sinα=$\frac{3}{5}$.求cosα、tanα和cos2α+sin(π+α)的值.

分析 由α为钝角,根据sinα的值求出cosα的值,进而求出tanα的值,原式利用诱导公式及二倍角的余弦函数公式化简,将各自的值代入计算即可求出值.

解答 解:∵α为钝角,sinα=$\frac{3}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
则原式=1-2sin2α-sinα=-$\frac{8}{25}$.

点评 此题考查了同角三角函数基本关系的运用,以及二倍角的余弦函数公式,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,甲到丙地再无其他路可走,则从甲地去丙地可选择的旅行方式有(  )
A.5种B.6种C.7种D.8种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.
求证:(1)PA∥平面BDE 
(2)若四棱锥P-ABCD的所有棱长都等于a,求BE与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx.
(1)求f($\frac{π}{6}$)的值;
(2)求函数f(x)的最小正周期及最大值.
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱垂直于底面,∠ACB=90°,AC=$\frac{1}{2}$AA1,D、E分别是棱AA1、CC1的中点.
(1)证明:AE∥平面BDC1
(2)证明:DC1⊥平面BDC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.二进制数1011(2)化为十进制数的结果为(  )
A.11B.9C.19D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知[x]表示不大于x的最大整数,如[5,3]=5,[-1]=-1,执行如图的程序框图,则输出的i的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,x),且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数x的值为-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的通项公式为an=pn+q,其中p、q为常数.
(1)求证:数列{an}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案