精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数,函数的导函数为.

(1)求函数的极值.

(2)若.

(i)求函数的单调区间;

(ii)求证: 时,不等式恒成立.

【答案】(1)的极小值为;函数的极大值为;(2)(i)函数的单调递增区间是,单调递减区间是;(ii)见解析.

【解析】试题分析: 的导函数,令,得到,或

的增或减区间,从而求得的极值;

时,求的导函数,当时, 单调增, 时, 单调减,从而求出函数的单调区间,

先求出的导数,构造新函数,通过讨论新函数的单调性,从而证出结论。

解析:(1)∵,∴

,或

上, .

的极小值为;函数的极大值为.

(2)∵,∴ .

(i)记

上, 是减函数;在上, 是増函数,

.

则在上, ;在上,

故函数的单调递增区间是,单调递减区间是.

(ii)时,

由(i)知, .

,则

在区间上, 是增函数;在区间上, 是减函数,

,∴,∴

,即成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中.直线的参数方程为为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点.以轴非负半轴为极轴)中.圆的极坐标方程是.

(1)写出直线的直角坐标方程,并把圆的极坐标方程化为直角坐标方程;

(2)设圆上的点到直线的距离最小,点到直线的距离最大,求点的横坐标之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an+bn} 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,△ABC的三个顶点为A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC边上高线AH所在直线的方程;
(Ⅱ)若直线l过点B且横、纵截距互为相反数,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,
(Ⅰ)求证:EF∥面PCD;
(Ⅱ)求直线BP与面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心在原点,焦点在轴上, 分别为上、下焦点,椭圆的离心率为 为椭圆上一点且

(1)若的面积为,求椭圆的标准方程;

(2)若的延长线与椭圆另一交点为,以为直径的圆过点 为椭圆上动点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的图象在处的切线方程;

(2)若函数在定义域上为单调增函数.

①求最大整数值;

②证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 在R上可导,其导函数为 且函数 的图像如图所示,则下列结论一定成立的是(
A.函数 的极大值是 ,极小值是
B.函数 的极大值是 ,极小值是
C.函数 的极大值是 ,极小值是
D.函数 的极大值是 ,极小值是

查看答案和解析>>

同步练习册答案