精英家教网 > 高中数学 > 题目详情

【题目】已知函数 是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为(
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)

【答案】C
【解析】解:由 得g′(x)=x2+1﹣
∵g(x)是[1,+∞)上的增函数,∴g′(x)≥0在[1,+∞)上恒成立,即x2+1﹣ ≥0在[1,+∞)上恒成立.
设x2=t,∵x∈[1,+∞),∴t∈[1,+∞),即不等式t+1﹣ ≥0在[1,+∞)上恒成立.
设y=t+1﹣ ,t∈[1,+∞),
∵y′=1+ >0,
∴函数y=t+1﹣ 在[1,+∞)上单调递增,因此ymin=2﹣m.
∵ymin≥0,∴2﹣m≥0,即m≤2.又m>0,故0<m≤2.m的最大值为2.
故得g(x)= x3+x﹣2+ ,x∈(﹣∞,0)∪(0,+∞).
将函数g(x)的图象向上平移2个长度单位,所得图象相应的函数解析式为φ(x)= x3+2x+ ,x∈(﹣∞,0)∪(0,+∞).
由于φ(﹣x)=﹣φ(x),
∴φ(x)为奇函数,
故φ(x)的图象关于坐标原点成中心对称.
由此即得函数g(x)的图象关于点Q(0,﹣2)成中心对称.
这表明存在点Q(0,﹣2),使得过点Q的直线若能与函数g(x)的图象围成两个封闭图形,则这两个封闭图形的面积总相等.
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与抛物线 相交于 两点.当直线的斜率是时, .

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,BC=2, ,若 ,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三条直线3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0围成直角三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(logax)= ,(0<a<1)
(1)求f(x)的表达式,并判断f(x)的奇偶性;
(2)判断f(x)的单调性;
(3)对于f(x),当x∈(﹣1,1)时,恒有f(1﹣m)+f(1﹣m2)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.
(1)求这4人中恰有1人去淘宝网购物的概率;
(2)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1的方程为x2+(y+1)2=4,圆C2的圆心坐标为(2,1).

(1)若圆C1与圆C2相交于AB两点,且|AB|=,求点C1到直线AB的距离;

(2)若圆C1与圆C2相内切,求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P的切线方程;
(2)若f(x)≤0恒成立求m的取值范围;
(3)求函数f(x)在区间[1,e]上最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图),其中样本数据分组区间为 ,…, .

(1)求频率分布图中的值;

(2)估计该企业的职工对该部门评分不低于80的概率;

(3)从评分在的受访职工中, 随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

同步练习册答案