精英家教网 > 高中数学 > 题目详情
已知a为常数,函数f(x)=a(x-1)(x-a).
(1)若f(x)>-a对一切x∈R恒成立,求a的取值范围;
(2)解不等式f(x)>x-1.
分析:(1)将f(x)>-a对一切x属于R恒成立转化为a[x2-(a+1)x+a+1]>0,再对a分类讨论解决;
(2)不等式f(x)>x-1转化为(x-1)[a(x-a)-1]>0,通过x-1>0且a(x-a)-1>0 或x-1<0且a(x-a)-1<0,使问题得到解决.
解答:解:(1)f(x)>-a对一切x属于R恒成立,即f(x)+a>0对一切x属于R恒成立,即a(x-1)(x-a)+a>0对一切x属于R恒成立,即a[x2-(a+1)x+a+1]>0,
分别讨论:
1)当a=0时,左边=0,不等式不成立,a∈∅;
2)当a>0时,两边同除以a,得x2-(a+1)x+a+1>0,
因y=x2-(a+1)x+a+1为开口向上的抛物线,因对一切x属于R不等式x2-(a+1)x+a+1>0恒成立,
故x2-(a+1)x+a+1=0无解,其判别式(a+1)2-4(a+1)<0,
即(a+1)(a+1-4)=(a+1)(a-3)<0,
解得0<a<3;
3)当a<0时,两边同除以a,得x2-(a+1)x+a+1<0,
因y=x2-(a+1)x+a+1为开口向上的抛物线,
不论a取什么值,都不可能使x2-(a+1)x+a+1<0恒成立,故此时a无解;
综上所述,只有当0<a<3时,f(x)>-a对一切x属于R恒成立.
(2)不等式f(x)>x-1,即a(x-1)(x-a)-(x-1)>0,即(x-1)[a(x-a)-1]>0,
解得x-1>0且a(x-a)-1>0 或x-1<0且a(x-a)-1<0,
①当a=0时,解得x<1;
②当a<0时,a(x-a)-1>0?x<a+
1
a
≤-2,
∴x-1>0且a(x-a)-1>0⇒x∈∅,x-1<0且a(x-a)-1<0?x<-2;
∴当a<0时,x<-2;
③当a>0时,a(x-a)-1>0?x>a+
1
a
≥2,
∴x-1>0且a(x-a)-1>0?x>2,x-1<0且a(x-a)-1<0?x<1;
∴x>2或x<1.
综上所述,当a<0时,不等式f(x)>x-1的解集为{x|x<-2};
当a=0时,不等式f(x)>x-1的解集为{x|x<1};
当a>0时,不等式f(x)>x-1的解集为{x|x<1或x>2};
点评:本题考查函数的恒成立问题,考查的重点与难点在于分类讨论思想的灵活运用,是一道考查学生综合运用能力高低的一道好题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1<x2),则下列结论中正确的是
①②③
①②③
(把你认为真命题的序号都写上)
0<a<
1
2
;  ②0<x1<1<x2;   ③f(x1)<0;   ④f(x2)<-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖北)已知a为常数,函数f(x)=x(lnx-ax)有两个极值点x1,x2(x1<x2)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为常数,函数f(x)=ln(
1+x2
+x)+ax.
(1)若a≥0,求证:函数f(x)在其定义域内是增函数;
(2)若a<0,试求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为常数,函数f(x)=|x-2|+|x-a|的图象关于x=3对称,函数g(x)=(x-b)•
lim
n→∞
an-x2n
an+x2n
(n∈N*)在(0,+∞)上连续,则常数b=(  )

查看答案和解析>>

同步练习册答案