精英家教网 > 高中数学 > 题目详情
6.如果直线y=ax+2与直线y=3x+b关于直线y=x对称,那么a,b的值分别是(  )
A.$\frac{1}{3}$,6B.$\frac{1}{3}$,-6C.3,-2D.3,6

分析 由题意可得函数y=ax+2与y=3x+b互为反函数,可求a和b的值,可得方程.

解答 解:∵直线y=ax+2与直线y=3x+b关于直线y=x对称,
∴函数y=ax+2与y=3x+b互为反函数,
又y=3x+b的反函数为y=$\frac{1}{3}$x-$\frac{1}{3}$b,
∴a=$\frac{1}{3}$,b=-6,
故选:B.

点评 本题考查直线的斜截式方程,涉及反函数,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.y=$\frac{2-cosx}{sinx}$,x∈(0,π)的值域为[$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:x+$\sqrt{3}$y=0(x≥0),过点P(1,0)作直线分别交射线OA,OB于点A,B.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线x-2y=0上时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+4x,(0≤x<1)}\\{lo{g}_{2013}x,(x>1)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(2,2014).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设Sn、Tn分别为等差数列{an}与{bn}的前n项和,若$\frac{S_n}{T_n}=\frac{2n-1}{3n+2},则\frac{a_7}{b_7}$等于(  )
A.$\frac{13}{23}$B.$\frac{27}{44}$C.$\frac{25}{41}$D.$\frac{23}{38}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)定义在R上,同时满足:
(1)对任意x∈R,f3(x)+f3(-x)=-3f(x)f(-x)[f(x)+f(-x)]都成立;
(2)对任意x≠y,有xf(x)+yf(y)>xf(y)+yf(x)成立;
现若有f(m2+6m+21)+f(n2-8n)≤0,则m2+n2的取值范围是[9,49].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.
(1)求证:PC∥平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在公比大于1的等比数列{an}中,a2=6,a1+a2+a3=26;设cn=an+bn,且数列{cn}是公差为2的等差数列,b1=a1
(1)求数列{an}和{cn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,an=41-2n,则当数列{an}的前n项和Sn取最大值时n的值等于(  )
A.21B.20C.19D.18

查看答案和解析>>

同步练习册答案