精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,圆经过椭圆C的左、右焦点

1)求椭圆C的标准方程;

2)若ABDE是椭圆C上不同四点(其中点D在第一象限),且,直线关于直线对称,求直线的方程.

【答案】1;(2

【解析】

1)根据离心率可得,根据圆经过椭圆C的左、右焦点可得,进而可得方程;

2)根据对称性可得,设出的方程,结合韦达定理和对称性求出的坐标,进而得到的斜率,结合直线平行可求直线的方程.

1)设,由题意得

由圆经过椭圆C的左,右焦点

所以

所以椭圆C的标准方程为

2)由题意可得,且直线的斜率存在,设

与椭圆方程联立,

所以

所以

由直线关于直线对称,可得直线的斜率为

代替k,得

所以直线的方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求处的切线方程;

2)当时,讨论的单调性;

3)若有两个极值点,且不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为,且

(Ⅰ)求

(Ⅱ)若,如图,为线段上一点,且,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某疾病有甲、乙两种类型,对甲型患者的有效治疗只能通过注射药物Y,而乙型患者可以服药物A进行有效治疗,对该疾病患者可以通过药物A的临床检验确定甲型或乙型.检验的方法是:如果患者利用药物A完成第一个疗程有效,就可以确定是乙型;否则进行第二个疗程,如果完成第二个疗程有效,也可以确定是乙型,否则确定是甲型.为了掌握这种疾病患者中甲型、乙型所占比例,随机抽取100名患者作为样本通过药物A进行临床检验,检验结果是:样本中完成第二个疗程有效的患者是完成第一个疗程有效的患者的60%,且最终确定为甲型患者的有36.

1)根据检验结果,将频率视作概率,在利用药物A完成第一个疗程无效的患者中仼选3人,求其中甲型患者恰为2人的概率;

2)该疾病的患者通过治疗,使血浆中某物质t的浓度降低到或更低时,就认为已经达到治愈指标.为了确定药物Y对甲型患者的疗效,需了解疗程次数x(单位:次)对患者血浆中t的浓度(单位:)的影响.在甲型患者中抽取一个有代表性的样本,利用药物Y进行5个疗程,每个疗程完成后对每个个体抽取相同容量的血浆进行分析,并对疗程数和每个疗程后样本血浆中t的平均浓度的数据作了初步处理,得到下面的散点图及一些统计量的值.

3

11.0

0.46

262.5

30.1

55

1.458

/span>

上表中.

①根据散点图直接判断(不必说明理由),哪一个适宜作为甲型患者血浆中t的平均浓度y关于疗程次数x的回归方程类型?并根据表中数据建立y关于x的回归方程.

②患者在享受基本医疗保险及政府专项补助后,自己需承担的费用z(单位:元)与xy的关系为.在达到治愈指标的前提下,甲型患者完成多少个疗程自己承担的费用最低?

对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x+1).

(1)0<f(1-2x)-f(x)<1,求实数x的取值范围;

(2)g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),当x∈[1,2]时,求函数y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.

则下列选项错误的是(

A.清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业

B.清华大学2019年毕业生中,硕士生的就业率比本科生高

C.清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散

D.清华大学2019年签三方就业的毕业生中,留北京人数超过一半

查看答案和解析>>

同步练习册答案