精英家教网 > 高中数学 > 题目详情

【题目】如图所示的五面体中,平面平面, ,,,

(Ⅰ)求四棱锥的体积;

(Ⅱ)求证:∥平面

(Ⅲ)设点为线段上的动点,求证:不垂直.

【答案】III)见解析(III)见解析

【解析】

(Ⅰ)取AD中点N,连接EN.可得ENAD.由平面ADE⊥平面ABCD,利用面面垂直的性质可得EN⊥平面ABCD.再由已知求得梯形ABCD得面积,代入棱锥体积公式求解;(Ⅱ)由ABCD,得CD∥平面ABFE.进一步得到CDEF.再由线面平行的判定可得EF∥平面ABCD;(Ⅲ)连接MN,假设EMAM.结合(Ⅰ)利用反证法证明EMAM不垂直.

(Ⅰ)取AD中点,连接

中,

所以.

因为平面平面

平面平面

平面ADE,

所以平面

又因为,所以.

因为

所以.

所以.

(Ⅱ)因为平面平面

所以∥平面

又因为平面,平面平面

所以

因为平面平面

所以∥平面

(Ⅲ)连接,假设.

由(Ⅰ)知平面

因为平面,所以

因为, 且

所以平面

因为平面

所以

在△中,

所以.

所以

这与矛盾.

所以假设不成立,即不垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816其中第一项是,接下来的两项是,再接下来的三项是,依此类推那么该数列的前50项和为  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆C上的一点,椭圆C的离心率与双曲线的离心率互为倒数,斜率为直线l交椭圆CBD两点,且ABD三点互不重合.

1)求椭圆C的方程;

2)若分别为直线ABAD的斜率,求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某企业有职工5000人,其中男职工3500人,女职工1500人.该企业为了丰富职工的业余生活,决定新建职工活动中心,为此,该企业工会采用分层抽样的方法,随机抽取了300名职工每周的平均运动时间(单位:h),汇总得到频率分布表(如表所示),并据此来估计该企业职工每周的运动时间:

平均运动时间

频数

频率

[02

15

0.05

[24

m

0.2

[46

45

0.15

[68

755

0.25

[810

90

0.3

[1012

p

n

合计

300

1

1)求抽取的女职工的人数;

2)①根据频率分布表,求出mnp的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;

男职工

女职工

总计

平均运动时间低于4h

平均运动时间不低于4h

总计

②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.

附:K2=,其中n=a+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)已知为自然对数的底数,求函数处的切线方程;

(2)当时,方程有唯一实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面为等腰直角三角形,,四边形为直角梯形,

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

1)当时,求的单调区间;

2)设函数,若的唯一极值点,求

查看答案和解析>>

同步练习册答案