【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱5kg).某采购商打算采购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:
等级 | 珍品 | 特级 | 优级 | 一级 |
箱数 | 40 | 30 | 10 | 20 |
售价(元/kg) | 36 | 30 | 24 | 18 |
(1)试计算样本中的100箱不同等级橙子的平均价格;
(2)按照分层抽样的方法,从这100个样本中抽取10箱,试计算各等级抽到的箱数;
(3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起再从中抽取2箱,求抽取的2箱中两种等级均有的概率
【答案】(1)(元)(2)各等级抽到的箱数分别为4,3,1,2(3)
【解析】
(1)将每种价格与对应的频率相乘,再求和即可得不同等级橙子的平均价格;(2)利用分层抽样的概念即可得结果;(3)利用列举法可得从中抽取2箱则一共有10种抽法,“抽取的2箱中两种等级均有”包含6个基本事件,故而可得其概率.
解:(1)依题意可知,样本中的100箱不同等级橙子的平均价格为
.
(2)各等级抽到的箱数分别为,,,,
即4,3,1,2.
(3)由(2)知特级3箱编号为,,;一级2箱编号为,共5箱,
从中抽取2箱则一共有10种抽法,样本空间为,
满足条件的基本事件为共6种,
设“抽取的2箱中两种等级均有”为事件,
则
所以抽取的2箱中两种等级均有的概率为.
科目:高中数学 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为4.
(1)求椭圆C的标准方程.
(2)设直线l过点(2,0)且与椭圆C相交于不同的两点A、B,直线与x轴交于点D,E是直线上异于D的任意一点,当时,直线BE是否恒过x轴上的定点?若过,求出定点坐标,若不过,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体的棱长为,点分别为棱的中点,下列结论中,其中正确的个数是( )
①过三点作正方体的截面,所得截面为正六边形;
②/平面;
③;
④异面直线与所成角的正切值为;
⑤四面体的体积等于
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,已知曲线的参数方程为(为参数)。曲线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线,的极坐标方程;
(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com