精英家教网 > 高中数学 > 题目详情

【题目】如图,△内接于圆是圆的直径,四边形为平行四边形,平面.

(1)求证:⊥平面

(2)设表示三棱锥的体积,求函数的解析式及最大值.

【答案】(1)见解析;(2)解析式见解析,最大值为3√3.

【解析】分析:(1)要证(1)要证平面,需证平面,需证,用综合法书写即可。

(2)(1)可知平面,所以体积为,,利用均值不等式求解最大值。

详解:(1)证明:∵四边形DCBE为平行四边形,∴CDBE,BCDE.

DC⊥平面ABCBC平面ABC,∴DCBC.

AB是圆O的直径,∴BCAC,且DCAC=C.

BC⊥平面ADC.

DEBC,∴DE⊥平面ADC

(2)∵DC⊥平面ABC,∴BE⊥平面ABC.

RtABE中,AB=2,EB=3√.

RtABC中,∵AC=x,BC=4x2√(0<x<2).

SABC=12ACBC=12x4x2√,

V(x)=VEABC=3√6x4x2√,(0<x<2).

x2(4x2)(x2+4x22)2=4,当且仅当x2=4x2,即x=2√时,取等号,

x=2√时,体积有最大值为3√3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥是正三角形为其中心.面的中点.

(1)证明:

(2)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】:实数满足,其中:实数满足.

(1),且为真,为假,求实数的取值范围;

(2)的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.

(1)求椭圆的离心率;

(2)若,设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点,若点在以为直径的圆内部,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,直线l经过点P(﹣1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2﹣6ρcosθ+1=0. (Ⅰ)若直线l与曲线C有公共点,求α的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆恒过点,且与直线 相切.

(1)求动圆圆心的轨迹的方程;

(2)探究在曲线上,是否存在异于原点的两点 ,当时,直线恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2a2,a4的等差中项.

(1)求数列{an}的通项公式;

(2)bn=,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.

查看答案和解析>>

同步练习册答案