【题目】如图,△内接于圆,是圆的直径,四边形为平行四边形,平面,.
(1)求证:⊥平面;
(2)设,表示三棱锥的体积,求函数的解析式及最大值.
【答案】(1)见解析;(2)解析式见解析,最大值为3√3.
【解析】分析:(1)要证(1)要证平面,需证平面,需证,用综合法书写即可。
(2)由(1)可知平面,所以体积为,,利用均值不等式求解最大值。
详解:(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE.
∵DC⊥平面ABC,BC平面ABC,∴DC⊥BC.
∵AB是圆O的直径,∴BC⊥AC,且DC∩AC=C.
∴BC⊥平面ADC.
∵DE∥BC,∴DE⊥平面ADC;
(2)∵DC⊥平面ABC,∴BE⊥平面ABC.
在Rt△ABE中,AB=2,EB=3√.
在Rt△ABC中,∵AC=x,BC=4x2√(0<x<2).
∴S△ABC=12ACBC=12x4x2√,
∴V(x)=VEABC=3√6x4x2√,(0<x<2).
∵x2(4x2)(x2+4x22)2=4,当且仅当x2=4x2,即x=2√时,取等号,
∴x=2√时,体积有最大值为3√3.
科目:高中数学 来源: 题型:
【题目】设f(x)=|x﹣1|﹣2|x+1|的最大值为m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知经过原点的直线与椭圆交于两点,点为椭圆上不同于的一点,直线的斜率均存在,且直线的斜率之积为.
(1)求椭圆的离心率;
(2)若,设分别为椭圆的左、右焦点,斜率为的直线经过椭圆的右焦点,且与椭圆交于两点,若点在以为直径的圆内部,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,直线l经过点P(﹣1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2﹣6ρcosθ+1=0. (Ⅰ)若直线l与曲线C有公共点,求α的取值范围;
(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆恒过点,且与直线: 相切.
(1)求动圆圆心的轨迹的方程;
(2)探究在曲线上,是否存在异于原点的两点, ,当时,直线恒过定点?若存在,求出该定点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com