精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F1,作圆x2+y2=a2的切线交双曲线右支于点P,切点为T,PF1的中点M在第一象限,则以下结论正确的是(  )
A、b-a=|MO|-|MT|
B、b-a>|MO|-|MT|
C、b-a<|MO|-|MT|
D、b-a=|MO|+|MT|
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:先从双曲线方程得:a,b.连OT,则OT⊥F1T,在直角三角形OTF1中,|F1T|=b.连PF2,M为线段F1P的中点,O为坐标原点得出|MO|-|MT|=
1
2
|PF2|-(
1
2
|PF1|-|F1T|)=
1
2
(|PF2|-|PF1|)+b,最后结合双曲线的定义得出答案.
解答: 解:连OT,则OT⊥F1T,
在直角三角形OTF1中,|F1T|=
|OF1|2-|OT|2
=b.
连PF2,M为线段F1P的中点,O为坐标原点,
∴|OM|=
1
2
|PF2|,
∴|MO|-|MT|=
1
2
|PF2|-(
1
2
|PF1|-|F1T|)=
1
2
(|PF2|-|PF1|)+b
=
1
2
×(-2a)+b=b-a.
故选A.
点评:本题主要考查双曲线的定义及三角形中位线和直线与圆相切时应用勾股定理.解答的关键是熟悉双曲线的定义的应用,直线与圆的位置关系以及三角形中的有关结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的单调区间:
(1)y=1+2sinx
(2)y=-
1
2
sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,已知侧视图是一个等边三角形,根据图中尺寸(单位:cm),这个几何体的体积为
 
cm3;表面积为
 
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

设M(-2,0),N(2,0),点P关于M,N的对称点为A,B,点Q满足|QA|+|QB|=12,则PQ的中点D的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),F1,F2为左右焦点,|F1F2|=2,椭圆上一动点P,左顶点为A,且cos∠F1PF2的最小值为
1
2

(1)椭圆C的方程;
(2)直线l:y=kx+m与椭圆C相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN,垂足为H,且
AH
2
=
MH
HN
,直线l是否过定点,如果过定点求出定点坐标,不过说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+cosα,则曲线f(x)在x=
π
6
处的切线斜率为(  )
A、
π
3
B、
π
3
+
3
2
C、
π
3
-
3
2
D、
π
3
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果两个函数的图象经过平移后能够重合,那么这两个函数称为“伴侣”函数,下列函数中与g(x)=sinx+cosx能构成“伴侣”函数的是(  )
A、f(x)=
2
(sinx+cosx)
B、f(x)=1+sinx
C、f(x)=sin
x
2
+cos
x
2
D、f(x)=2cos
x
2
(sin
x
2
+cos
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(3,1)作曲线C:x2+y2-2x=0的两条切线,切点分别为A,B,则直线AB的方程为(  )
A、2x+y-3=0
B、2x-y-3=0
C、4x-y-3=0
D、4x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设(x1,y1),(x2,y2),…(xn,yn)是变量x,和y的n个样本点,直线l是由这样样本点通过最小二乘法得到的线性回归方程(如图),则下列结论中正确的是(  )
A、x和y正相关
B、x和y的相关系数为直线l的斜率
C、当n为偶数时,分布在l两侧的样本点的个数一定相同
D、x和y的相关系数在-1到0之间

查看答案和解析>>

同步练习册答案