精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)用“五点法”在如图所示的虚线方框内作出函数在一个周期内的简图(要求:列表与描点,建立直角坐标系);

(2)函数的图像可以通过函数的图像经过“先伸缩后平移”的规则变换而得到,请写出一个这样的变换!

【答案】(1)见解析;(2) g(x)=2cosx=2sin(x+ ),先横坐标伸长为原来的2倍,得到y=2sin(+),再向右平移个单位,得到 f(x)= 2sin(x+)

o

【解析】试题分析:(1)根据已知中函数的解析式,描出函数图象上几个关键点的坐标,进而可得函数在一个周期上的草图;

(2) g(x)=2cosx=2sin(x+ ),先横坐标伸长为原来的2倍,得到y=2sin(+),再向右平移个单位即可.

试题解析:

(1)

x

-

x+

0

π

y

0

2

0

-2

0

(2) g(x)=2cosx=2sin(x+ ),先横坐标伸长为原来的2倍,得到y=2sin(+),再向右平移个单位(答案不唯一),得到 f(x)= 2sin(x+)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中给出下面四个结论中错误的是( )

A. 平面平面ABCD

B. 直线BE,CF相交于一点

C. EF//平面BGD

D. 平面BGD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在面体中,四边形是边长为的正方形,平面.

(1)求证:平面

(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数, 是偶函数.

1的值;

2说明函数的单调性;若对任意的不等式恒成立,求实数的取值范围;

3若存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断并证明函数的单调性;
(2)求此函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )

A. AC⊥平面ABB1A1 B. CC1与B1E是异面直线

C. A1C1∥B1E D. AE⊥BB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 ,…,Sn是其前n项和,计算S1、S2、S3 , 由此推测计算Sn的公式,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是(
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油
D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为:

(1)求圆的圆心所在直线方程一般式;

(2)若直线被圆截得弦长为,试求实数的值;

(3)已知定点且点是圆上两动点,当可取得最大值为时,求满足条件的实数的值。

查看答案和解析>>

同步练习册答案