A. | 39 | B. | 40 | C. | 43 | D. | 46 |
分析 利用函数单调递增及n∈N*时,f(n)∈N*,通过赋值法,和简单的逻辑推理,即可得到f(4)的值.
解答 解:由f[f(n)]=2n+1,令n=1,2得:f[f(1)]=3,f[f(2)]=5.
∵当n∈N*时,f(n)∈N*,且f(x)在(0,+∞)上是单调递增函数,
①若f(1)=1,则由f[f(1)]=3得:f(1)=3,与单调递增矛盾,故不成立;
②若f(1)=2,则f(2)=3,则f(3)=5,则f(5)=7,
则f(3)<f(4)<f(5)即5<f(4)<7,
∴f(4)=6.
f(6)=f(f(4))=2×4+1=9,
f(7)=f(f(5))2×5+1=11.
∴f(1)+f(2)+…+f(7)=2+3+5+6+7+9+11=43.
故选:C.
点评 本题考查函数的单调性,抽象函数的应用,以及赋值法,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | -3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{7}{8}$ | C. | 1 | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 0 | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com