精英家教网 > 高中数学 > 题目详情

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且的公比为.

(1)求猫眼曲线的方程;

(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

【答案】12)详见解析(3

【解析】

试题(1)求椭圆标准方程,一般方法为待定系数法,由题意得,再由成等比数列,且公比为2)弦中点问题,一般利用点差法得中点坐标与弦斜率关系:,两式相除得值为3)由椭圆几何意义得,过点且斜率为的直线与椭圆也相切,而直线与椭圆相切问题,一般利用判别式为零列等量关系,根据弦长公式可得底边长,根据平行直线间距离公式可得高

试题解析:解. 1

2)设斜率为的直线交椭圆于点,线段中点

,得

存在且,且

,即

同理,

得证

3)设直线的方程为

两平行线间距离:

的面积最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,EAB的中点,FCC1上,且CF2FC1,点P是侧面AA1D1D(包括边界)上一动点,且PB1∥平面DEF,则tanABP的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系中,直线过点,且倾斜角为,以原点为极点,轴的正半轴为极轴,建立极坐标系,半径为4的圆的圆心的极坐标为

(Ⅰ)写出直线的参数方程和圆的极坐标方程;

(Ⅱ)试判定直线和圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.

(1)是否存在实数,使数列是等比数列?若存在,求的值;若不存在,请说明理由;

(2)若是数列的前项和,求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。

(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;

(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,

恒有f(x)>g(x)成立。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程恰有两个不相等的实数根, 则实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是直线l3x+4y+8=0上的动点,PAPB是圆Cx2+y2-2x-2y+1=0的两条切线(AB为切点),则四边形PACB面积的最小值(  )

A. B. C. 2D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)用五点法作函数的图象;

2)说出此图象是由的图象经过怎样的变化得到的;

3)求此函数的对称轴、对称中心、单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数R上的单调函数,求实数a的取值范围;

2a ( ) 的导函数①若对任意的x0 0,求证:存在,使0;②若求证

查看答案和解析>>

同步练习册答案