精英家教网 > 高中数学 > 题目详情

【题目】某景区拟将一半径为的半圆形绿地改建为等腰梯形(如图,其中为圆心,点在半圆上)的放养观赏鱼的鱼池,周围四边建成观鱼长廊(宽度忽略不计).,鱼池面积为(单位:).

1)求S关于的函数表达式,并求鱼池面积何时最大;

2)已知鱼池造价为每平方米2000元,长廊造价为每米3000元,问此次改建的最高造价不超过多少?(取计算)

【答案】1时,227000000

【解析】

1)结合三角函数的基本概念,表示出等腰梯形的上底下底和高,结合和面积公式和导数即可求解

2)作,求出,则 ,表示等腰梯形周长为

,进而表示出总造价公式,利用导数研究函数增减性,进而求解

如图,,则等腰梯形面积为

,代入数据可得:

,当时,时,,故当时,函数取到最大值,

2)作,得,等腰梯形周长为:

,结合(1)中面积,可得总造价

化简得:

由(1)知时单调递增,时单调递减,令

,令,当时,时,,故得出上增减性相同,所以单增,时单减,在时取到最大值:

故总造价不超过27000000

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】凤鸣山中学的高中女生体重 (单位:kg)与身高(单位:cm)具有线性相关关系,根据一组样本数据),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是(

A.具有正线性相关关系

B.回归直线过样本的中心点

C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg

D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线:,(t为参数),曲线:,(为参数).

1)以原点为极点,x轴正半轴为极轴建立极坐标系;当,的交点的极坐标(其中极径,极角);

2)过坐标原点O的垂线,垂足为A,POA中点,变化时,P点轨迹的参数方程,并指出它是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率为,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生09之间的整数值的随机数,如果我们用1234表示下雨,用567890表示不下雨,顺次产生的随机数如下:

90 79 66 19 19 25 27 19 32 81 24 58 56 96 83

43 12 57 39 30 27 55 64 88 73 01 13 13 79 89

,这三天中恰有两天下雨的概率约为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线相交于两点,为抛物线的焦点,若,则的中点的横坐标为( )

A. B. 3C. 5D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科学技术的飞速发展,网络也已经逐渐融入了人们的日常生活,网购作为一种新的消费方式,因其具有快捷、商品种类齐全、性价比高等优势而深受广大消费者认可.某网购公司统计了近五年在本公司网购的人数,得到如下的相关数据(其中x=1”表示2015年,x=2”表示2016年,依次类推;y表示人数)

x

1

2

3

4

5

y(万人)

20

50

100

150

180

1)试根据表中的数据,求出y关于x的线性回归方程,并预测到哪一年该公司的网购人数能超过300万人;

2)该公司为了吸引网购者,特别推出玩网络游戏,送免费购物券活动,网购者可根据抛掷骰子的结果,操控微型遥控车在方格图上行进. 若遥控车最终停在胜利大本营,则网购者可获得免费购物券500元;若遥控车最终停在失败大本营,则网购者可获得免费购物券200. 已知骰子出现奇数与偶数的概率都是,方格图上标有第0格、第1格、第2格、、第20格。遥控车开始在第0格,网购者每抛掷一次骰子,遥控车向前移动一次.若掷出奇数,遥控车向前移动一格(从)若掷出偶数遥控车向前移动两格(从),直到遥控车移到第19格胜利大本营)或第20格(失败大本营)时,游戏结束。设遥控车移到第格的概率为,试证明是等比数列,并求网购者参与游戏一次获得免费购物券金额的期望值.

附:在线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年320日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5,则称该人的幸福度为“很幸福”.

()求从这18人中随机选取3,至少有1人是“很幸福”的概率;

()以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3,表示抽到“很幸福”的人数,的分布列及

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.

1)求的分布列及数学期望;

2)在概率(=0123), 的值最大, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面. 

(1)证明:平面平面

(2)若为棱的中点,,求四面体的体积.

查看答案和解析>>

同步练习册答案