精英家教网 > 高中数学 > 题目详情

【题目】从一张半径为3的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为米的圆锥筒(如图2.若所裁剪的扇形铁皮的圆心角为.

1)求圆锥筒的容积;

2)在(1)中的圆锥内有一个底面圆半径为的内接圆柱(如图3),求内接圆柱侧面积最大时的值.

【答案】1;(2.

【解析】

1)根据圆锥的结构特征,扇形即为为圆锥的侧面展开图,求出圆锥的底面半径和高,即可求出容积;

2)根据圆柱内接圆锥关系,求出圆柱的高与底面半径的关系式,进而求出圆柱侧面积的目标函数,根据函数特征求其最值即可.

1)设圆锥筒的半径为,容积为

∵所裁剪的扇形铁皮的圆心角为

,解得

.

∴圆锥筒的容积为.

2)设内接圆柱高为则有,由圆锥内接圆柱的轴截面图,

所以内接圆柱侧面积

所以当时内接圆柱侧面积最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,动圆与圆外切,且圆与直线相切,记动圆圆心的轨迹为曲线

(1)求曲线的轨迹方程;

(2)设过定点的动直线与曲线交于两点,试问:在曲线上是否存在点(与两点相异),当直线的斜率存在时,直线的斜率之和为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证:函数上为增函数;

2)当时,若恒成立,求实数的取值范围;

3)设,试讨论函数的零点情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,AH是边BC上的高,点G是△ABC的重心,若△ABC的面积为,AC=,tanC=2,则_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若存在常数,使得对任意的成立,则称函数是“类周期函数”.

(1)判断函数是否是“类周期函数”,并证明你的结论;

(2)求证:若函数是“类周期函数”,且是偶函数,则是周期函数;

(3)求证:当时,函数一定是“类周期函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形

(1)求椭圆C的方程

(2)假设直线l与椭圆C交于A,B两点①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆CN,并且OB的长②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .若gx)存在2个零点,则a的取值范围是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知B岛在A岛正东方向距离12km处,C岛在A岛北偏东方向相离8km处.某船从A岛出发向B岛驶去,并在与B,C距离相等处待命.

(1)求此船航行的距离(精确到0.1km).

(2)若此船在待命处接到命令,以最少的时间行驶到C岛,则此船应沿什么方向行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在点处的切线.

(1)求证:

(2)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案