【题目】从一张半径为3的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为米的圆锥筒(如图2).若所裁剪的扇形铁皮的圆心角为.
(1)求圆锥筒的容积;
(2)在(1)中的圆锥内有一个底面圆半径为的内接圆柱(如图3),求内接圆柱侧面积最大时的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,动圆与圆外切,且圆与直线相切,记动圆圆心的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)设过定点的动直线与曲线交于两点,试问:在曲线上是否存在点(与两点相异),当直线的斜率存在时,直线的斜率之和为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若存在常数,使得对任意的成立,则称函数是“类周期函数”.
(1)判断函数,是否是“类周期函数”,并证明你的结论;
(2)求证:若函数是“类周期函数”,且是偶函数,则是周期函数;
(3)求证:当时,函数一定是“类周期函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.
(1)求椭圆C的方程;
(2)假设直线l:与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知B岛在A岛正东方向距离12km处,C岛在A岛北偏东方向相离8km处.某船从A岛出发向B岛驶去,并在与B,C距离相等处待命.
(1)求此船航行的距离(精确到0.1km).
(2)若此船在待命处接到命令,以最少的时间行驶到C岛,则此船应沿什么方向行驶?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com