精英家教网 > 高中数学 > 题目详情

【题目】已知直线 与抛物线交于 两点,记抛物线在 两点处的切线 的交点为

(I)求证:

(II)求点的坐标( 表示);

)若,求的面积的最小值.

【答案】()见解析 () (III)

【解析】试题分析:()可得,根据韦达定理可得结果;() ,由 联立可得,解得,可得以 ,同理可得 ,两式联立可解得点的坐标;(Ⅲ)根据弦长公式、点到直线距离公式以及三角形面积公式,可得,由 ,化简后利用基本不等式可得结果.

试题解析:() 解:由

可得

所以

() 证明:由已知,所以可设 ,由 联立可得,由,所以所以 ,同理可得 解得

所以点的坐标为

(III)由()可知点 到直线的距离,又,所以△的面积. 

因为 ,所以,当 取到等号,所以△的面积的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某综艺节目为增强娱乐性,要求现场嘉宾与其场外好友连线互动.凡是拒绝表演节目的好友均无连线好友的机会;凡是选择表演节目的好友均需连线未参加过此活动的3个好友参与此活动,以此下去.
(Ⅰ)假设每个人选择表演与否是等可能的,且互不影响,则某人选择表演后,其连线的3个好友中不少于2个好友选择表演节目的概率是多少?
(Ⅱ)为调查“选择表演者”与其性别是否有关,采取随机抽样得到如表:

选择表演

拒绝表演

合计

50

10

60

10

10

20

合计

60

20

80

①根据表中数据,是否有99%的把握认为“表演节目”与好友的性别有关?
②将此样本的频率视为总体的概率,随机调查3名男性好友,设X为3个人中选择表演的人数,求X的分布列和期望.
附:K2=

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,设内角A、B、C的对边分别为a、b、c,向量 =(cosA+ ,sinA),向量 =(﹣sinA,cosA),若| + |=2.
(1)求角A的大小;
(2)若b=4 ,且c= a,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知平面

(I)求证: 平面

(II)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}则下列判断正确的是(
A.PQR
B.PRQ
C.QPR
D.RPQ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 =1(a>0,b>0)的左、右焦点分别为F1 , F2 , P为双曲线上一点,且 =0,△F1PF2的内切圆半径r=2a,则双曲线的离心率e=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线与双曲线交于A,B两点,且点A的横坐标为4.

(1)求的值及B点坐标;

(2)结合图形,直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=cos2x﹣ sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=﹣cos2x﹣ sin2x的图象,则φ的值可以为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(1)若点是棱的中点,求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案