精英家教网 > 高中数学 > 题目详情

【题目】“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在内的人数为92.

1)估计这些党员干部一周参与主题教育活动的时间的平均值;

2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在内的党员干部给予奖励,且参与时间在内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.

【答案】12

【解析】

1)根据频率分布直方图以每个小矩形的中值为估值计算即可求出;

2)用分层抽样抽取的人数:在内为4人,设为;在内为1人,设为A列出基本事件,根据古典概型计算概率即可.

1)由已知可得,

所以这些党员干部一周参加主题教育活动的时间的平均值为

.

2)因为,所以.

故参与主题教育活动的时间在的人数为

参与主题教育活动的时间在的人数为.

则利用分层抽样抽取的人数:在内为4人,设为;在内为1人,设为A.从这5人中选取3人的事件空间为:

,共10种情况,

其中全是二等奖的有4种情况.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设二阶矩阵A.

1 A1

2 若曲线C在矩阵A对应的变换作用下得到曲线C6x2y21,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是首项为,公差为的等差数列,是首项为,公比为q的等比数列.

1)设,若均成立,求d的取值范围;

2)若,证明:存在,使得n=23···m+1均成立,并求d的取值范围(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调增区间;

2)令,且函数有三个彼此不相等的零点,其中.

①若,求函数处的切线方程;

②若对恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体中,,平面平面,平面平面.,点P是线段上靠近A的三等分点.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴的建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)若点与点分别为曲线动点,求的最小值,并求此时的点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是自然对数的底数,,已知函数.

1)若函数有零点,求实数的取值范围;

2)对于,证明:时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,讨论的单调性;

2)若在区间内有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地拟建造一座大型体育馆,其设计方案侧面的外轮廓如图所示,曲线是以点为圆心的圆的一部分,其中;曲线是抛物线的一部分;,且恰好等于圆的半径.假定拟建体育馆的高(单位:米,下同).

1)若,求的长度;

2)若要求体育馆侧面的最大宽度不超过米,求的取值范围;

3)若,求的最大值.

查看答案和解析>>

同步练习册答案