精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,定义域为[0,2π],g(x) 为f(x) 的导函数.
(1)求方程g(x)=0 的解集;
(2)求函数g(x) 的最大值与最小值;
(3)若函数F(x)=f(x)﹣ax 在定义域上恰有2个极值点,求实数a 的取值范围.

【答案】
(1)解:∵f(x)= ,定义域为[0,2π],

∴f′(x)=﹣ +

∵g(x) 为f(x) 的导函数,

∴由方程g(x)=0 得 =0,

解得 ,或x=

∴方程g(x)=0 的解集为{ }


(2)解:∵ + =﹣2×

令g′(x)=0,解得x= 或x=

x

0

(0,

,2π)

g′(x)

0

0

0

g(x)

1

e2π

∴g(x)的最大值为g(0)=1,

∴g(x)的最小值为g( )=﹣


(3)解:∵ ﹣a=g(x)﹣a,

∴函数F(x)=f(x)﹣ax在定义域上恰有2个极值点,

等价于g(x)﹣a=0在定义域外上恰有两个零点且零点处异号,

即y=a的图象恰恰有两个交点,

由(2)知F′(0)=g(0)﹣a=1﹣a,

F′(2π)=g(2π)﹣a=e2π﹣a,

F′(2π)=g(2π)﹣a=e2π﹣a,

,则F′(2π)<0,

∴F′(x)=0只有一个零点,不成立.∴

,即a= 在x= 处同号,不成立;

若F′(2π)≤0,则F′(x)=0有3个零点,不成立.

∴只有F′(2π)>0,

∴满足条件为:

解得 <a<e2π或a=

∴实数a 的取值范围是{a| <a<e2π或a= }


【解析】(1)f′(x)=﹣ + ,由方程g(x)=0 得 =0,由此能求出方程g(x)=0 的解集.(2) + =﹣2× ,令g′(x)=0,解得x= 或x= ,由此利用导数性质能求出g(x)的最值.(3)函数F(x)=f(x)﹣ax在定义域上恰有2个极值点,等价于y=a的图象恰恰有两个交点,由此利用分类讨论思想能求出实数a 的取值范围.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司过去五个月的广告费支出与销售额(单位:万元)之间有下列对应数据:


2

4

5

6

8



40

60

50

70

工作人员不慎将表格中的第一个数据丢失.已知呈线性相关关系,且回归方程为,则下列说法:销售额与广告费支出正相关;丢失的数据(表中处)为30该公司广告费支出每增加1万元,销售额一定增加万元;若该公司下月广告投入8万元,则销售

额为70万元.其中,正确说法有( )

A1B2C3D4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过F作平行于x轴的直线交抛物线于A,B两点(AB的左侧),若△AOB的面积为2.

(1)求抛物线C的方程;

(2)P是抛物线C的准线上一点,Q是抛物线上的一点,若PF⊥QF,求证:直线PQ与抛物线相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数x,y满足 +2y﹣2=lnx+lny,则xy=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知bsinA= acosB.
(1)求角B 的值;
(2)若cosAsinC= ,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知曲线C1y=(x>0)及曲线C2y= (x>0).C1上的点Pn的横坐标为an过C1上的点Pn(n∈N)作直线平行于x轴,交曲线C2于点Qn,再过点Qn作直线平行于y轴,交曲线C1于点Pn+1.

试求an+1与an之间的关系,并证明a2n-1<<a2n(n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD中点,PA⊥底面ABCD,PA=2.

(1)证明:平面PBE⊥平面PAB;
(2)求直线PC与平面PBE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数在区间上的最大、最小值;

2)求证:在区间上,函数的图象在函数的图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)当n≥6时,求证: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

同步练习册答案