精英家教网 > 高中数学 > 题目详情

 (2009全国卷Ⅱ文)(本小题满分12分).   

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1

(Ⅰ)证明:AB=AC    

(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

解析:本题考查线面垂直证明线面夹角的求法,第一问可取BC中点F,通过证明AF⊥平面BCC1,再证AF为BC的垂直平分线,第二问先作出线面夹角,即证四边形AFED是正方形可证平面DEF⊥平面BDC,从而找到线面夹角求解。此题两问也可建立空间直角坐标系利用向量法求解。

解法一:(Ⅰ)取BC中点F,连接EF,则EF,从而EFDA。

连接AF,则ADEF为平行四边形,从而AF//DE。又DE⊥平面,故AF⊥平面,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC。

(Ⅱ)作AG⊥BD,垂足为G,连接CG。由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角。由题设知,∠AGC=600..

    设AC=2,则AG=。又AB=2,BC=,故AF=

得2AD=,解得AD=

故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。

因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。

连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。

连接CH,则∠ECH为与平面BCD所成的角。.   

因ADEF为正方形,AD=,故EH=1,又EC==2,

所以∠ECH=300,即与平面BCD所成的角为300.

解法二:

(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz。

设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,2c),E(,c).

于是=(,0),=(-1,b,0).由DE⊥平面知DE⊥BC, =0,求得b=1,所以    AB=AC。

(Ⅱ)设平面BCD的法向量

=(-1,1, 0),

=(-1,0,c),故    

令x=1, 则y=1, z=,=(1,1, ).

又平面的法向量=(0,1,0)

由二面角为60°知,=60°,

故  °,求得    

于是   , 

            °

所以与平面所成的角为30°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009全国卷Ⅰ文)(本小题满分12分)(注意:在试题卷上作答无效)

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。

(Ⅰ)求再赛2局结束这次比赛的概率;

(Ⅱ)求甲获得这次比赛胜利的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009全国卷Ⅱ文)已知△ABC中,,则

A.            B.            C.       D.

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009全国卷Ⅱ文)(本小题满分12分).   

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1

(Ⅰ)证明:AB=AC    

(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009全国卷Ⅰ文)已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线所成的角的余弦值为

(A)       (B)       (C)         (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

 (2009全国卷Ⅱ文) 已知正四棱柱中,=重点,则异面直线所形成角的余弦值为

(A)          (B)             (C)      (D)      

查看答案和解析>>

同步练习册答案