精英家教网 > 高中数学 > 题目详情
17.在三棱锥P-ABC中,PA⊥平面ABC,且AB⊥BC,AB=$\sqrt{6}$,PA=BC=$\sqrt{5}$,则三棱锥P-ABC的表面积为(  )
A.12πB.16πC.18πD.24π

分析 确定PC的中点O为球心,求出球的半径,利用球的表面积公式,即可求得结论.

解答 解:∵PA⊥面ABC,BC?面ABC,
∴PA⊥BC
∵AB⊥BC,PA∩AB=A
∴BC⊥面PAB
∵PB?面PAB
∴BC⊥PB
取PC的中点O,则OP=OA=OB=OC,∴O为球心
∵AB=$\sqrt{6}$,PA=BC=$\sqrt{5}$,∴PC=4
∴球半径为r=2
∴该三棱锥的外接球的表面积为4πr2=16π
故选:B

点评 本题考查球的表面积,解题的关键是确定球心与半径,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.焦点在y轴上,焦距等于4,离心率等于$\frac{{\sqrt{2}}}{2}$的椭圆的标准方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{12}=1$B.$\frac{x^2}{12}+\frac{y^2}{16}=1$C.$\frac{x^2}{4}+\frac{y^2}{8}=1$D.$\frac{x^2}{8}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线x2-y2=-4的顶点坐标是(  )
A.(0,1)B.(0,±2)C.(±1,0)D.(±2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$
(I)判断f(x)在R上的单调性,并加以证明
(II)当x∈[1,2]时,f(ax-1)+f($\frac{1}{2}$)≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆C:x2+$\frac{{y}^{2}}{15}$=1,过C任意一点M作与直线l0:x+y-6=0夹角为30°的直线l,l交l0于点P,则|MP|的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-$\frac{1}{2}$x+c(a、c∈R),满足f(1)=0,f(0)=$\frac{1}{4}$成立.
(1)求a、c的值;
(2)是否存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=1.
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|和|$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(2)求两向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P1(x1,y1)和P2(x2,y2),P是直线P1P2上一点,且P1P=-2PP2,则P点坐标为(-x1+2x2,-y1+2y2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,且b2+c2-$\sqrt{2}$bc=a2
(1)求角A;
(2)若a=$\sqrt{3}$,cosB=$\frac{4}{5}$,求该三角形的面积.

查看答案和解析>>

同步练习册答案