精英家教网 > 高中数学 > 题目详情

【题目】已知数列是公比为的等比数列,且的等比中项,其前项和为;数列是等差数列, ,其前项和满足 (为常数,且)

1)求数列的通项公式及的值;

2)求

【答案】(1);(2)

【解析】试题分析:(1)根据1-a2a11+a3的等比中项,建立关于a1的方程,解出,从而得出数列{an}的通项公式.再由Tn=nλbn+1分别取n=12,建立关于{bn}的公差d与λ的方程组,解之即可得到实数λ的值;(2由等差数列的通项与求和公式算出{bn}的前n项和Tn=4n2+4n 利用裂项求和的方法算出

试题解析:

1)由题意得: ,即,解得

设数列的公差为d,于是,即,即 解得(舍去),

2)由(1)知数列的首项b1=8,公差d=8
{bn}的前n项和Tn项和为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时千米的速度匀速行驶千米().假设汽油的价格是每升元,而汽车每小时耗油升,司机的工资是每小时元.

(1)求这次行车总费用关于的表达式;

(2)当为何值时,这次行车的总费用最低?并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A、B、C的对边分别是a,b,c,给出下列命题: ①若sinBcosC>﹣cosBsinC,则△ABC一定是钝角三角形;
②若sin2A+sin2B=sin2C,则△ABC一定是直角三角形;
③若bcosA=acosB,则△ABC为等腰三角形;
④在△ABC中,若A>B,则sinA>sinB;
其中正确命题的序号是 . (注:把你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和Sn , 首项a1=a,公比为q(q≠0且q≠1).
(1)推导证明:Sn=
(2)等比数列{an}中,是否存在连续的三项:ak、ak+1、ak+2 , 使得这三项成等差数列?若存在,求出符合条件的等比数列公比q的值,若不存在,说明理由;
(3)本题中,若a=q=2,已知数列{nan}的前n项和Tn , 是否存在正整数n,使得Tn≥2016?若存在,求出n的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.单位向量都相等
B.若 是共线向量, 是共线向量,则 是共线向量
C.| + |=| |,则 =0
D.若 是单位向量,则 =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 ,且 为线段上一点.

(1)求证:平面平面

(2)若,求证: 平面,并求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , S3=15,a3和a5的等差中项为9
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若圆C的圆心在第一象限,圆C与x轴相交于A(1,0)、B(3,0)两点,且与直线x﹣y+1=0相切,则圆C的标准方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,前m(m为奇数)项的和为77,其中偶数项之和为33,且a1﹣am=18,则数列{an}的通项公式为an=

查看答案和解析>>

同步练习册答案