分析 由条件|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{2\sqrt{5}}{5}$,求得cos(α-β)的值,可得sin(α-β)的值;再根据sinβ=-$\frac{5}{13}$,求得cosβ 的值,从而利用两角和的正弦公式求得sinα=sin[(α-β)+β]的值.
解答 解:由题意可得$\overrightarrow{a}$-$\overrightarrow{b}$=(cosα-cosβ,sinα-sinβ),|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\frac{2\sqrt{5}}{5}$=$\sqrt{{(cosα-cosβ)}^{2}{+(sinα-sinβ)}^{2}}$=$\sqrt{2-2cos(α-β)}$,
∴cos(α-β)=$\frac{3}{5}$.
∵0<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<0,且sinβ=-$\frac{5}{13}$,∴cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{12}{13}$,α-β∈0,π),∴sin(α-β)=$\sqrt{{1-cos}^{2}(α-β)}$=$\frac{4}{5}$,
∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=$\frac{4}{5}×\frac{12}{13}$+$\frac{3}{5}×(-\frac{5}{13})$=$\frac{33}{65}$.
点评 本题主要考查两个向量的数量积的运算,同角三角函数的基本关系,两角差的三角公式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{6}}}{6}$ | B. | $\frac{{\sqrt{6}}}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com