精英家教网 > 高中数学 > 题目详情
16.已知函数$f(x)={sin^2}x+2\sqrt{3}sinxcosx-{cos^2}x\;\;(x∈R)$.
(Ⅰ)求f(x)的最小正周期和在[0,π]上的单调递减区间;
(Ⅱ)若α为第四象限角,且$cosα=\frac{3}{5}$,求$f(\frac{α}{2}+\frac{7π}{12})$的值.

分析 (Ⅰ)利用倍角公式及辅助角公式化积,由周期公式求得周期,再由复合函数的单调性求得函数的单调减区间;
(Ⅱ)由α的范围结合已知求出sinα,再结合三角函数的诱导公式求得$f(\frac{α}{2}+\frac{7π}{12})$的值.

解答 解:(Ⅰ)由已知$f(x)={sin^2}x+2\sqrt{3}sinxcosx-{cos^2}x$
=$\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$.
∴最小正周期$T=\frac{2π}{ω}=\frac{2π}{2}=π$;
由$\frac{π}{2}+2kπ≤2x-\frac{π}{6}≤\frac{3π}{2}+2kπ,k∈z$,
得$\frac{2π}{3}+kπ≤x≤\frac{10π}{6}+kπ,k∈z$.
故函数f(x)在[0,π]上的单调递减区间$[{\frac{1}{3}π,\frac{5}{6}π}]$;
(Ⅱ)∵α为第四象限角,且$cosα=\frac{3}{5}$,∴$sinα=-\frac{4}{5}$.
∴$f(\frac{α}{2}+\frac{7π}{12})$=$2sin(α+\frac{7π}{6}-\frac{π}{6})=-2sinα$=$\frac{8}{5}$.

点评 本题考查三角函数中的恒等变换应用,考查了正弦函数的图象和性质,训练了三角函数值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.直线L:y=k(x-5)与圆O:x2+y2=16相交于A、B两点,当k变动时,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:$\frac{x}{2}$≥$\frac{x+6}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以下关于椭圆的命题中真命题的个数是(  )
?①“-3<m<5”是“方程$\frac{x^2}{5-m}+\frac{y^2}{m+3}$=1表示椭圆”的充要条件;
?②在平面直角坐标系中,已知△ABC的顶点A(-3,0),B(3,0)且顶点C在椭圆$\frac{x^2}{25}+\frac{y^2}{16}$=1上,则$\frac{sinA+sinC}{sinB}$=$\frac{5}{3}$;
?③椭圆C:$\frac{x^2}{16}+\frac{y^2}{9}$=1上的点到直线l:x+y=6距离的最小值为$\sqrt{2}$;
④椭圆C:$\frac{x^2}{4}+{y^2}$=1的内接平行四边形ABCD面积的最大值是4.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1=3,$\overrightarrow{BD}$=2$\overrightarrow{D{A}_{1}}$,$\overrightarrow{{C}_{1}E}$=2$\overrightarrow{EA}$,则DE等于(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.方程lg(2x+1)+lgx=1的解集为{2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.以(-3,0)和(3,0)为焦点,长轴长为8的椭圆方程为(  )
A.$\frac{x^2}{16}+\frac{y^2}{25}=1$B.$\frac{x^2}{16}+\frac{y^2}{7}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{7}+\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若全集U=R,集合A={x|x2+4x+3>0},B={x|log3(2-x)≤1},则∁U(A∩B)=(  )
A.{x|x<-1或x>2}B.{x|x<-1或x≥2}C.{x|x≤-1或x>2}D.{x|x≤-1或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了解广州环亚化妆品科技有限公司员工的月工资水平,该单位800位员工中随机取了80位进行调查.得到如图所示的频率分别直方图.

试由如图估计该单位员工的月平均工资为44百元.

查看答案和解析>>

同步练习册答案