精英家教网 > 高中数学 > 题目详情

【题目】已知是抛物线上任意一点,,且点为线段的中点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若为点关于原点的对称点,过的直线交曲线 两点,直线交直线于点,求证:

【答案】(Ⅰ) (Ⅱ)见证明

【解析】

(Ⅰ)设,根据中点坐标公式可得,代入曲线方程即可整理得到所求的轨迹方程;(Ⅱ)设,设,将直线与曲线联立可得;由抛物线定义可知,若要证得只需证明垂直准线,即轴;由直线的方程可求得,可将点横坐标化简为,从而证得轴,则可得结论.

(Ⅰ)设

中点

为曲线上任意一点 ,代入得:

的轨迹的方程为:

(Ⅱ)依题意得,直线的斜率存在,其方程可设为:

联立得:,则

直线的方程为是直线与直线的交点

根据抛物线的定义等于点到准线的距离

在准线要证明,只需证明垂直准线

即证

的横坐标:

轴成立 成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.

(1)求椭圆C的标准方程;

(2)设动直线l交椭圆CPQ两点,直线OPOQ的斜率分别为kk.,求证OPQ的面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,底面是等腰三角形,且,侧面 是菱形,,平面平面,点的中点.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,

①求曲线在点处的切线方程;

②求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程与直线的极坐标方程;

(2)若射线与曲线交于点(不同于原点),与直线交于点,直线与极轴所在直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}的首项a12,前n项和为,且数列{}是以为公差的等差数列·

1)求数列{}的通项公式;

2)设,数列{}的前n项和为

①求证:数列{}为等比数列,

②若存在整数mn(mn1),使得,其中为常数,且2,求的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对 100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.

(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;

(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)恒成立的实数的最大值

(2)设,且满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区欲建两条圆形观景步道(宽度忽略不计),如图所示,已知(单位:米),要求圆M分别相切于点BD,圆分别相切于点CD

(1)若,求圆的半径;(结果精确到0.1米)

(2)若观景步道的造价分别为每米0.8千元与每米0.9千元,则当多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)

查看答案和解析>>

同步练习册答案