【题目】已知数列,
为其前n项的和,满足
.
(1)求数列的通项公式;
(2)设数列的前n项和为
,数列
的前n项和为
,求证:当
时
;
(3)若函数的定义域为R,并且
,求证
.
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为 ,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C上的点到点
的距离与它到直线
的距离之比为
,圆O的方程为
,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中
,设直线AB,AC的斜率分别为
;
(1)求曲线C的方程,并证明到点M的距离
;
(2)求的值;
(3)记直线PQ,BC的斜率分别为、
,是否存在常数
,使得
?若存在,求
的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义上的函数
,若满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(1)设,判断
在
上是否有界函数,若是,请说明理由,并写出
的所有上界的值的集合,若不是,也请说明理由;
(2)若函数在
上是以3为上界的有界函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各项均为正数的数列的前
项和为
,且对任意正整数
,都有
.
(1)求数列的通项公式;
(2)如果等比数列共有2016项,其首项与公比均为2,在数列
的每相邻两项
与
之间插入
个
后,得到一个新的数列
.求数列
中所有项的和;
(3)是否存在实数,使得存在
,使不等式
成立,若存在,求实数
的范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点
的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,
且
,
且
,函数
.
(1)设,
,若
是奇函数,求
的值;
(2)设,
,判断函数
在
上的单调性并加以证明;
(3)设,
,
,函数
的图象是否关于某垂直于
轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的离心率为
,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线与椭圆
交于
,
两点,
的中点
在圆
上,求
(
为坐标原点)面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com