精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆E的左右顶点分别为AB,左右焦点分别为,,直线交椭圆于CD两点,与线段及椭圆短轴分别交于两点(不重合),.

(Ⅰ)求椭圆E的离心率;

(Ⅱ)若,设直线的斜率分别为,求的取值范围.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】试题分析:(Ⅰ))由,可知,可得离心率.

(Ⅱ)通过直线与椭圆方程联立,以及韦达定理,用表达出的坐标,结合已知条件,解出,以及参数的取值范围;然后通过点在直线和曲线上,求出只含有的表达式,最后根据表达式的单调性和的取值范围,得到的取值范围.

试题解析:(Ⅰ)由,可知即椭圆方程为 ,离心率为;

(Ⅱ)设易知

消去y整理得:

可知,即,解得

由题知,点M、F1的横坐标,有

易知满足

,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x , 函数g(x)=log x.
(1)若g(ax2+2x+1)的定义域为R,求实数a的取值范围;
(2)当x∈[( t+1 , ( t]时,求函数y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非负实数m,n,使得函数y=log f(x2)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=a﹣ ,x∈R,(其中a为常数).
(1)若f(x)为奇函数,求a的值;
(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的离心率为,短轴的一个端点到右焦点的距离为

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题

(1)若命题为真命题,求实数的取值范围;

(2)若命题为真命题,求实数的取值范围;

(3)若命题“”为真命题,且命题“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场分析,某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本(万元)可以看成月产量(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.

(1)写出月总成本(万元)关于月产量(吨)的函数关系;

(2)已知该产品的销售价为每吨1.6万元,那么月产量为多少时,可获最大利润.

(3)当月产量为多少吨时,每吨平均成本最低,最低成本是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ).

(1)若 为假, 为真,求实数的取值范围;

(2)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0且a≠1,如果函数y=a2x+2ax﹣1在[﹣1,1]上的最大值为7,求a的值.

查看答案和解析>>

同步练习册答案