精英家教网 > 高中数学 > 题目详情

【题目】已知分别是椭圆的左、右焦点,离心率为 分别是椭圆的上、下顶点, .

(1)求椭圆的方程;

(2)若直线与椭圆交于相异两点,且满足直线的斜率之积为,证明:直线恒过定点,并采定点的坐标.

【答案】(1)(2)直线恒过定点.

【解析】试题分析:(1)设出相关点坐标,利用和离心率为得到几何元素间的关系即可求解;(2)联立直线和椭圆的方程,得到关于的一元二次方程,利用根与系数的关系、斜率公式得到等式,进而利用直线方程判定其过定点.

试题解析:(1)由题知,∴.

,得 ② 又

由①②③联立解得:

∴椭圆的方程为.

(2)证明:由椭圆的方程得上顶点

,由题意知,

得:

即:

化简得:

解得:,结合

即直线恒过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)右顶点与右焦点的距离为 ﹣1,短轴长为2
(1)求椭圆的方程;
(2)过左焦点F的直线与椭圆分别交于A、B两点,若三角形OAB的面积为 ,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 )的左、右焦点分别为 的直线交双曲线右支于 两点 则双曲线的离心率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线的焦点为,准线与轴的交点为,过点的直线,抛物线相交于不同的两点.

(1)若,求直线的方程;

(2)若点在以为直径的圆外部,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
1)sin213°+cos217°﹣sin13°cos17°
2)sin215°+cos215°﹣sin15°cos15°
3)sin218°+cos212°﹣sin18°cos12°
4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°
5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax2﹣ex,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解开展校园安全教育系列活动的成效对全校学生进行了一次安全意识测试根据测试成绩评定“合格”“不合格”两个等级同时对相应等级进行量化:“合格”记5“不合格”记0分.现随机抽取部分学生的答卷统计结果及对应的频率分布直方图如图所示:

等级

不合格

合格

得分

[20,40)

[40,60)

[60,80)

[80,100]

频数

6

a

24

b

(1)a,b,c的值;

(2)先用分层抽样的方法从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈再从这10人中任选4记所选4人的量化总分为ξ,ξ的分布列及数学期望E(ξ);

(3)某评估机构以指标其中表示的方差)来评估该校开展安全教育活动的成效.若0.7,则认定教育活动是有效的;否则认定教育活动无效应调整安全教育方案.在(2)的条件下判断该校是否应调整安全教育方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+ )= a,曲线C2的参数方程为 (θ为参数).
(1)求C1的直角坐标方程;
(2)当C1与C2有两个公共点时,求实数a取值范围.

查看答案和解析>>

同步练习册答案