精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(4-x).x<0}\\{{2}^{x-1},x≥0}\end{array}\right.$则f(log214)+f(-4)的值为6.

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(4-x).x<0}\\{{2}^{x-1},x≥0}\end{array}\right.$,将x=log214和x=-4代入计算可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{2-lo{g}_{2}(4-x).x<0}\\{{2}^{x-1},x≥0}\end{array}\right.$,
∴f(log214)=7,
f(-4)=-1,
∴f(log214)+f(-4)=6,
故答案为:6.

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,在圆x2+y2=16上任取一点P,过点P作x 轴的垂线段PD,D为垂足,当点P在圆上运动时,则线段PD的中点M的轨迹方程为$\frac{x^2}{16}+\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,F1,F2是椭圆C1与双曲线C2的公共焦点,点A是C1,C2的公共点.设C1,C2的离心率分别是e1,e2,∠F1AF2=2θ,则(  )
A.${e_1}^2{sin^2}θ+{e_2}^2{cos^2}θ=e_1^2e_2^2$
B.${e_2}^2{sin^2}θ+{e_1}^2{cos^2}θ=e_1^2e_2^2$
C.${e_2}^2{sin^2}θ+{e_1}^2{cos^2}θ=1$
D.${e_1}^2{sin^2}θ+{e_2}^2{cos^2}θ=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知{an}是等比数列,则“a2<a4”是“{an}是单调递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若指数函数f(x)=ax(a>0,且a≠1)的图象经过点(3,8),则f(-1)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在(2x-$\frac{1}{4x}$)5的展开式中,含x3项的系数为-20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若sinα+$\sqrt{3}$cosα=2,则tan(π+α)=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}中,a1=1,a4=8,则其前4项之和为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)和g(x)分别是定义在R上的奇函数和偶函数,且f(x)-g(x)=2x3+x2+3,则f(2)+g(2)等于(  )
A.-9B.-7C.7D.9

查看答案和解析>>

同步练习册答案