精英家教网 > 高中数学 > 题目详情

【题目】1852年,英国来华传教士伟烈亚力将《孙子算经》中物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为中国剩余定理”.“中国剩余定理讲的是一个关于整除的问题,例如求120002000个整数中,能被3除余1且被7除余1的数的个数,现由程序框图,其中MOD函数是一个求余函数,记表示m除以n的余数,例如,则输出i为( .

A.98B.97C.96D.95

【答案】D

【解析】

根据程序图可知,能被3除余1且被7除余1的数,就是能被21整除余1的数,运用等差数列的通项公式,以及解不等式即得。

由题得,运行程序图,当时,,满足条件,此时,当时,,此时,可得等差数列,则,当时,即i是正整数,因此.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调节高三学生学习压力,某校高三年级举行了拔河比赛,在赛前三位老师对前三名进行了预测,于是有了以下对话:老师甲:“7班男生比较壮,7班肯定得第一名”.老师乙:“我觉得14班比15班强,14班名次会比15班靠前”.老师丙:“我觉得7班能赢15班”.最后老师丁去观看完了比赛,回来后说:“确实是这三个班得了前三名,且无并列,但是你们三人中只有一人预测准确”.那么,获得一、二、三名的班级依次为( )

A.7班、14班、15B.14班、7班、15

C.14班、15班、7D.15班、14班、7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的左右焦点分别为F1F2,点O为坐标原点,点P在双曲线的右支上,且满足|F1F2|=2|OP|.若直线PF2与双曲线C只有一个交点,则双曲线C的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=exax+aaR),其图象与x轴交于Ax10),Bx20)两点,且x1x2

1)求a的取值范围;

2)证明:f′()<0f′(x)为函数fx)的导函数);

3)设点C在函数yfx)的图象上,且△ABC为等腰直角三角形,记t,求(a1)(t1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥的底面边长为分别为的中点.

1)当时,证明:平面平面

2)若平面与底面所成锐二面角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面平面.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上一动点,点在线段上,点在半径上,且满足.

(1)在圆上运动时,求点的轨迹的方程

(2)设过点的直线与轨迹交于点不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.

查看答案和解析>>

同步练习册答案