精英家教网 > 高中数学 > 题目详情

【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程为常数)有解,则解得个数一定是偶数;(4是偶函数且有最小值.其中假命题的序号是____________.

【答案】1)、(3

【解析】

化简函数的解析式,画出函数的图象,对四个命题逐一判断即可.

,它的图象如下图所示:

命题(1):当时,上单调递增,在上单调递减且没有最值,故本命题是假命题;

命题(2):因为直线存在斜率,所以一定有实数解,故本命题是真命题;

命题(3):,所以函数是偶函数,当有解时,若,该方程的解的个数为偶数;若时,,只有一个解,故本命题是假命题;

命题(4):由(3)可知,函数是偶函数,函数有最小值,最小值为零,故本命题是真命题.

故答案为:(1)、(3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面.

1)求证:

2)若,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),过原点的两条直线分别与交于点,得到平行四边形.

1)当为正方形时,求该正方形的面积.

2)若直线关于轴对称,上任意一点的距离分别为,当为定值时,求此时直线的斜率及该定值.

3)当为菱形,且圆内切于菱形时,求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)在曲线上任取一点,连接,在射线上取,使,点轨迹的极坐标方程;

2)在曲线上任取一点,在曲线上任取一点,的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棋盘上标有第站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.

1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;

2)证明:

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,底面△是等腰直角三角形,为侧棱的中点.

1)求证:平面

2)求异面直线所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是椭圆的左右焦点,过点的直线交椭圆于两点,且的周长为12

(Ⅰ)求椭圆的方程

(Ⅱ)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若为单调函数,求a的取值范围;

2)若函数仅一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点为原点的抛物线C的焦点与椭圆的上焦点重合,且过点.

1)求椭圆的标准方程;

(2)若抛物线上不同两点AB作抛物线的切线,两切线的斜率,若记AB的中点的横坐标为mAB的弦长,并求的取值范围.

查看答案和解析>>

同步练习册答案