精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.
(1)求证:直线l恒过定点;
(2)求直线l被圆C截得的弦长最长与最短的方程.

【答案】
(1)证明:将直线化为直线束方程:x+y﹣4+(2x+y﹣7)=0.联立方程x+y﹣4=0与2x+y﹣7=0,得点(3,1);

将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1)


(2)解:当直线l过圆心与定点(3,1)时,弦长最大,代入圆心坐标得m=

当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,斜率为2,代入方程得m=

此时直线l方程为2x﹣y﹣5=0,圆心到直线的距离为 ,所以最短弦长为4


【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )=
(1)确定函数f(x)的解析式;
(2)用定义证明f(x)在(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的上顶点为P(0,1),过E的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆E上,该菱形对角线BD所在直线的斜率为﹣1.
(1)求椭圆E的方程;
(2)当直线BD过点(1,0)时,求直线AC的方程;
(3)当∠ABC= 时,求菱形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log (x2﹣2x)的单调递增区间是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ax2+x(a∈R).
(1)若函数f(x)在x=1处的切线平行于x轴,求实数a的值,并求此时函数f(x)的极值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,点E是棱AA1的中点,则异面直线DE与BC所成的角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求实数a,m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2x+c,且f(x)>0的解集是
(1)求f(2)的最小值及f(2)取最小值时f(x)的解析式;
(2)在f(2)取得最小值时,若对于任意的x>2,f(x)+4≥m(x﹣2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x﹣4y+3=0.
(1)若不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;
(2)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案