精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过抛物线焦点的直线分别交抛物线和圆于点(自上而下)

1)求证:为定值;

2)若成等差数列,求直线的方程.

【答案】1)见解析(2

【解析】

1)讨论当直线过焦点且垂直于轴时,四点坐标可直接求出,可求得,当直线过焦点且不垂直于轴时,设直线方程为,联立抛物线方程,运用韦达定理和抛物线的定义,即可得到定值;

1)由成等差数列,可得,从而可得,而,列方程可求出斜率,从而可求出直线方程.

1)由题知,焦点,圆半径

①当斜率不存在时,,交点,此时

②当斜率存在时,设

联立,消去

由韦达定理得,显然恒成立

由抛物线定义得,同理

所以

2)由成等差数列,得

所以弦长

由(1)知显然斜率存在,由抛物线定义得

,解得

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy中,椭圆ab0)的短轴长为,离心率为.

1)求椭圆的方程;

2)斜率为1且经过椭圆的右焦点的直线交椭圆于P1P2两点,P是椭圆上任意一点,若λμR),证明:λ2+μ2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:

1)根据以上提供的信息,完成列联表,并完善等高条形图;

选物理

不选物理

总计

数学成绩优秀

数学成绩不优秀

260

总计

600

1000

2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?

附:

临界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)已知点是曲线上的任意一点,当点到直线的距离最大时,求经过点且与直线平行的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,,直线AGBG相交于点G,且它们的斜率之积为.记点G的轨迹为曲线C.

1)若射线与曲线C交于点D,且E为曲线C的最高点,证明:.

2)直线与曲线C交于MN两点,直线AMANy轴分别交于PQ两点.试问在x轴上是否存在定点T,使得以PQ为直径的圆恒过点T?若存在,求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设两点,且,若函数的图象分别在点处的两条切线互相垂直,求的最小值;

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过.已知一等奖和二等奖奖品的单价分别为元、元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于人,那么下列说法中错误的是(

A.最多可以购买份一等奖奖品

B.最多可以购买份二等奖奖品

C.购买奖品至少要花费

D.共有种不同的购买奖品方案

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】工资条里显红利,个税新政人民心我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.201911日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收人个税起征点专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:

旧个税税率表(个税起征点3500元)

新个税税率表(个税起征点5000元)

缴税基数

每月应纳税所得额(含税)收入个税起征点

税率(%

每月应纳税所得额(含税)收入个税起征点专项附加扣除

税率(%

1

不超过1500元的部分

3

不超过3000元的部分

3

2

超过1500元至4500元的部分

10

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元至55000元的部分

30

超过35000元至55000元的部分

30

随机抽取某市2020名同一收入层级的从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元,统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合赡养老人扣除的人数之比是;此外,他们均不符合其他专项附加扣除,新个税政策下该市的专项附加扣除标准为:住房1000/月,子女教育每孩1000/月,赡养老人2000/月等.假设该市该收入层级的从业者都独自享受专项附加扣除,将预估的该市该收入层级的从业者的人均月收入视为其个人月收入,根据样本估计总体的思想,解决如下问题:

1)求在旧政策下该收入层级的从业者每月应纳的个税;

2)设该市该收入层级的从业者2019年月缴个税为X元,求X的分布列和期望;

3)根据新旧个税方案,估计从20191月开始,经过多少个月,该市该收入层级的从业者各月少缴纳的个税之和就超过2019年的人均月收入?

查看答案和解析>>

同步练习册答案