精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且经过点.

(1)求椭圆方程;

(2)过点的直线与椭圆交于两个不同的点,求线段的垂直平分线在轴截距的范围.

【答案】(1) (2)

【解析】试题分析:(1)将点坐标代入椭圆方程,与离心率联立方程组,解得a,b(2)先设的方程,与椭圆方程联立方程组,利用韦达定理得MN中点坐标以及斜率k取值范围,根据点斜式得线段的垂直平分线方程,解得在轴截距关于斜率k函数关系式,最后利用导数求函数最值,得其范围

试题解析:(1)

(2)的斜率不存在时,的垂直平分线与轴重合,没有截距,故的斜率存在.

的方程为,代入椭圆方程

得: 与椭圆有两个不同的交点

,即,即

的中点

的垂直平分线的方程为

轴上的截距

,则

时,恒成立

时,

的垂直平分线在轴上的截距的范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

已知函数

(1)时,求不等式的解集;

(2) |的解集包含,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1a11a13成等比数列.

(1)求{an}的通项公式;

(2) 是{an}的前n项和,求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于函数的判断正确的是(  )

的解集是

极小值,是极大值;

没有最小值,也没有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为促进农业发展,加快农村建设,某地政府扶持兴建了一批“超级蔬菜大棚”,为了解大棚的面积与年利润之间的关系,随机抽取了其中的7个大棚,并对当年的利润进行统计整理后得到了如下数据对比表:

由所给数据的散点图可以看出,各样本点都分布在一条直线附近,并且有很强的线性相关关系.

(1)求关于的线性回归方程;(结果保留三位小数);

(2)小明家的“超级蔬菜大棚”面积为8.0亩,估计小明家的大棚当年的利润为多少;

(3)另外调查了近5年的不同蔬菜亩平均利润(单位:万元),其中无丝豆为:1.5,1.7,2.1,2.2,2.5;彩椒为:1.8,1.9,1.9,2.2,2.2,请分析种植哪种蔬菜比较好?

参考数据:.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为 ,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1)的定义域为( )
A.(﹣1,1)
B.
C.(﹣1,0)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学100位学生在市统考中的理科综合分数,以 分组的频率分布直方图如图.

(1)求直方图中的值;

(2)求理科综合分数的众数和中位数;

(3)在理科综合分数为 的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在的学生中应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆M与定圆C:x2+y2+4x=0相外切,且与直线l:x-2=0相切,则动圆M的圆心的轨迹方程为(  )

A. y2-12x+12=0 B. y2+12x-12=0

C. y2+8x=0 D. y2-8x=0

查看答案和解析>>

同步练习册答案