精英家教网 > 高中数学 > 题目详情
12.已知点M(1,0),直线l:x-2y-2=0;则过点M且与直线l平行的直线方程为x-2y-1=0;以M为圆心且被l截得的弦长为$\frac{4}{5}\sqrt{5}$的圆的方程是$(x-1)^{2}+{y}^{2}=\frac{4}{5}$.

分析 根据过(a,b)点且与直线Ax+By+C=0的直线方程为A(x-a)+B(y-b)=0,可得过点M且与直线l平行的直线方程,根据已知求出圆的半径,可得满足条件的圆的方程.

解答 解:∵直线l:x-2y-2=0,点M(1,0),
∴过点M且与直线l平行的直线方程为(x-1)-2(y-0)=0,
即x-2y-1=0;
以M为圆心且被l截得的弦长为$\frac{4}{5}\sqrt{5}$的圆的半径为$\frac{2}{5}\sqrt{5}$,
故M为圆心且被l截得的弦长为$\frac{4}{5}\sqrt{5}$(即直径)的圆的方程为:$(x-1)^{2}+{y}^{2}=\frac{4}{5}$,
故答案为:x-2y-1=0,$(x-1)^{2}+{y}^{2}=\frac{4}{5}$

点评 本题考查的知识点是直线的方程,直线平行的充要条件,圆的标准方程,是直线与圆的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若将f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{6}$个单位,再将纵坐标不变,横坐标变为原来的$\frac{1}{2}$,得g(x)的图象,且g(x)图象关于直线x=-$\frac{π}{12}$对称,则f($\frac{π}{4}$)=(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=({x-\frac{π}{2}})sinx$在[-2π,2π]上的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果函数f(x)的图象关于原点对称,在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是(  )
A.增函数且最小值为3B.增函数且最大值为3
C.减函数且最小值为-3D.减函数且最大值为-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\left\{\begin{array}{l}{2x,0≤x≤1}\\{2,1<x<2}\\{3,2≤x}\end{array}\right.$,的值域为(  )
A.RB.[0,+∞)C.[0,3]D.[0,2]∪{3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示是一个几何体的三视图,则这个几何体的表面积为(  )
A.$20+4\sqrt{2}+4\sqrt{5}$B.$20+8\sqrt{2}$C.$20+8\sqrt{2}+4\sqrt{5}$D.$20+4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin2x+sinxcosx,$x∈[0,\frac{π}{2}]$
(1)求f(x)的最小值;
(2)若$f(α)=\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.扇形的圆心角是60°,半径为2$\sqrt{3}$cm,则扇形的面积为2πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=-x2+2x+3,则该函数的零点有2个,分别是-1,3.

查看答案和解析>>

同步练习册答案