【题目】对于函数定义已知偶函数的定义域为当且时,
(1)求并求出函数的解析式;
(2)若存在实数使得函数在上的值域为,求实数的取值范围.
【答案】(1),, (2)
【解析】
(1)按的规律,逐步计算观察发现对任意的,有 从而求出,由是偶函数可求得函数的解析式;
(2)由题意可知在上递减且,分和两种情况讨论,在时得出推出矛盾,在时可将问题转化为是方程的两个不相等的负实数根,转化为一元二次方程有两个不相等的负根,由根与系数的关系列出不等式组求出的取值范围
(1)因为
故
故对任意的,有
于是
故当时,
又,故当时,
由为偶函数,当时,
因此,,即;
(2)由于的定义域为,
又可知与b同号,且,
函数的图象,如图所示
若,则在上单调递增,有,
所以,解得,不符合题意,舍去;
若,则在上单调递减,由题意,有
故是方程的两个不相等的负实数根,即方程在上有
两个不相等的实根,于是
综合上述,实数的取值范围为
科目:高中数学 来源: 题型:
【题目】高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.
(Ⅰ)求图中的值;
(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;
(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:
经常使用 | 偶尔使用或不用 | 合计 | |
男性 | 50 | 100 | |
女性 | 40 | ||
合计 | 200 |
完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为数列的前n项和, 且满足为常数.
(1)若,求的值;
(2)是否存在实数 ,使得数列为等差数列?若存在,求出的值;若不存在,请说明理由;
(3)当时,若数列满足,且,令,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是一块平行四边形园地,经测量,.拟过线段上一点 设计一条直路(点在四边形的边上,不计直路的宽度),将该园地分为面积之比为的左,右两部分分别种植不同花卉.设(单位:m).
(1)当点与点重合时,试确定点的位置;
(2)求关于的函数关系式;
(3)试确定点的位置,使直路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数是“似周期函数”,非零常数为函数的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”的“似周期”为,那么它是周期为的周期函数;
②函数是“似周期函数”;
③函数是“似周期函数”;
④如果函数是“似周期函数”,那么“,”.
其中是真命题的序号是___________.(写出所有满足条件的命题序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点.
(1)若为线段上的动点,证明:平面平面;
(2)若为线段,,上的动点(不含,),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线的焦点重合.
(1)求椭圆的方程;
(2)斜率为的直线过点,且与抛物线交于两点,设点,的面积为,求的值;
(3)若直线过点,且与椭圆交于两点,点关于轴的对称点为,直线的纵截距为,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
日均浓度 | ||||||
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com