精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为菱形,底面上的一点,.

(1)证明:平面

(2)设二面角,求与平面所成角的大小.

【答案】(1)证明见解析;(2).

【解析】

试题分析: (1)由已知的线面垂直,可得线线垂直,从而得到于是有,利用解三角形得到,,从而得到线面垂直;(2)利用面面垂直得到线面垂直,构造出到平面的投影,利用解三角形可求出结果.

试题解析:(1)证明:因为底面为菱形,所以

底面,所以.............2分

如图,设,连接

因为,故.............3分

从而

因为,所以

由此知.............5分

因为与平面内两条相交直线都垂直,所以平面.............6分

(2)在平面内过点为垂足

因为二面角,所以平面平面............7分

又平面平面,故平面............8分

因为与平面内两条相交直线都垂直,故平面,于是

所以底面为正方形,............10分

到平面的距离为

因为,且平面,平面,

平面两点到平面的距离相等

............11分

与平面所成角为,则

所以与平面所成角为............12分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与短轴的两个端点是正三角形的三个项点,点在椭圆上.

(1)求椭圆的方程;

(2)设不过原点且斜率为的直线与椭圆交于不同的两点,线段的中点为,直线与椭圆交于,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=)且与点A相距10海里的位置C.

(I)求该船的行驶速度(单位:海里/小时);

(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线被圆所截得的弦长为8.

(1)求圆的方程;

(2)若直线与圆切于点,当直线轴正半轴,轴正半轴围成的三角形面积最小时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点.

1)求椭圆的方程;

2)设线段的垂直平分线与轴交于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为原点的直角坐标系中,点的直角顶点,已知,且点的纵坐标大于0.

(1)的坐标

(2)求圆关于直线对称的圆的方程;在直线上是否存在点,过点的任意一条直线如果和圆都相交,则该直线被两圆截得的线段长相等,如果存在求出点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为数列的前项和,的等比中项.

(1)求数列的通项公式;

(2)若为整数,,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

动点分别到两定点(-3,0)、(3,0) 连线的斜率之乘积为,设的轨迹为曲线,分别为曲线的左、右焦点,则下列说法中:

(1)曲线的焦点坐标为

(2)当时,的内切圆圆心在直线上;

(3)若,则

(4)设,则的最小值为

其中正确的序号是:_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数为

1求函数的极值;

2时,关于的不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案