精英家教网 > 高中数学 > 题目详情

为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表l:男生上网时间与频数分布表

表2:女生上网时间与频数分布表

(I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率;
(II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
表3:

附:

(Ⅰ);(Ⅱ)没有90%的把握认为“大学生上网时间与性别有关”.

解析试题分析:(Ⅰ)由男生上网时间频数分布表求出上网时间少于60分钟的人数和不少于60分钟的人数,任意选3人,恰有1人上网时间少于60分钟的选法有种,则易得概率恰有1人上网时间少于60分钟的;(Ⅱ)根据男生、女生的上网时间频数分布表易得2×2列联表,并由公式得出值,即得结论.
试题解析:(Ⅰ)由男生上网时间频数分布表可知100名男生中,上网时间少于60分钟的有60人,不少于60分钟的有40人,      2分
故从其中任选3人,恰有1人上网的时间少于60分钟的概率为   4分
      6分
(Ⅱ)

 
上网时间少于60分
上网时间不少于60分
合计
男生
60
40
100
女生
70
30
100
合计
130
70
200
     8分
,      10分
,∴没有90%的把握认为“大学生上网时间与性别有关”.      12分
考点:1、概率;2、独立性检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组,……,第五组.右图是按上述分组方法得到的频率分布直方图.

(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设表示该班某两位同学的百米测试成绩,且已知,求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.
(1)求时的概率;
(2)求的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

编号
1
2
3
4
5
x
169
178
166
175
180
y
75
80
77
76
81
  (1)已知甲厂生产的产品共84件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品,
①用上述样本数据估计乙厂生产的优等品的数量;
②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)甲、乙等名同学参加某高校的自主招生面试,已知采用抽签的方式随机确定各考生的面试顺序(序号为).
(Ⅰ)求甲、乙两考生的面试序号至少有一个为奇数的概率;
(Ⅱ)记在甲、乙两考生之间参加面试的考生人数为,求随机变量的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中
随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:
.
(I)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(II)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将从该市某学校抽取的样本数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.

(Ⅰ)求该校报考体育专业学生的总人数n;
(Ⅱ)若用这所学校的样本数据来估计该市的总体情况,现从该市报考体育专业的学生中任选3人,设表示体重超过60千克的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物。根据历年的种植经验,一株该种作物的年收货量(单位:kg)与它的“相近”作物株数之间的关系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
这里,两株作物“相近”是指它们之间的直线距离不超过1米。
(Ⅰ)完成下表,并求所种作物的平均年收获量;
Y
51
48
45
42
频数
 
4
 
 
 (Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.

查看答案和解析>>

同步练习册答案