精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数f (x)是正比例函数,函数g (x)是反比例函数,且f(1)=1,g(1)=2,
(1)求函数f (x)和g(x);
(2)判断函数f (x)+g(x)的奇偶性.
(3)求函数f (x)+g(x)在(0,]上的最小值.

(1) f(x)=x,g(x)=.(2)函数f(x)+g(x)是奇函数.
(3)函数f(x)+g(x)在(0,]上的最小值是2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)若的一个极值点,求a的值;
(II)求证:当上是增函数;
(III)若对任意的总存在成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的定义域和値域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数 
(1)判断函数的奇偶性和单调性;
(2)当时,有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(12分)已知函数在R上为奇函数,.
(I)求实数的值;
(II)指出函数的单调性.(不需要证明)
(III)设对任意,都有;是否存在的值,使最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知二次函数f(x)满足条件:,     
(1)求
(2)讨论  的解的个数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)写出的单调区间.(不要求证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数是奇函数(a,b,c都是整数),且
(1)求a,b,c的值;
(2)当x<0,的单调性如何?用单调性定义证明你的结论。

查看答案和解析>>

同步练习册答案