精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(I)求函数的单调区间;

,使不等式成立,求的取值范围.

【答案】(1)见解析(2)

【解析】试题分析:()根据导数与单调性的关系可知增区间为的解集与定义域的交集,减区间为与定义域的交集;()先将不等式变形化简得,构造函数,问题转化为(如果是对任意的x恒成立则转化为),利用函数的单调性与极值求出函数hx)的最大值得到问题的解.

试题解析:(1

a≤0时, 恒成立,fx)在R上单调递减; 3

a>0时,令,解得x=lna

fx)的单调递增区间为

fx)的单调递减区间为5

)因为,使不等式,则,即

,则问题转化为8

,令,则

x在区间内变化时, 变化情况如下表:

x





+

0

-

hx




由上表可得,当x=时,函数hx)有最大值,且最大值为

所以a≤12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若1和8的原象分别是3和10,则5在f下的象是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
(Ⅰ)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;
(Ⅱ)判断变量x与y之间是正相关还是负相关;
(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程y=bx+a中, ,其中 为样本平均值,线性回归方程也可写为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数.

(1)设,当时,求函数的单调区间;

(2)当时,直线与函数的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合U={x|x是小于6的正整数},A={1,2},B∩(CA)={4},则(A∪B)=(
A.{3,5}
B.{3,4}
C.{2,3}
D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上两点A(﹣1,0),B(1,0),在圆C:(x﹣3)2+(y﹣4)2=4上取一点P,
(Ⅰ)x﹣y+c≥0恒成立,求c的范围
(Ⅱ)从x+y+1=0上的点向圆引切线,求切线长的最小值
(Ⅲ)求|PA|2+|PB|2的最值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
1)已知两平面的法向量分别为 =(0,1,0), =(0,1,1),则两平面所成的二面角为45°或135°;
2)若曲线 + =1表示双曲线,则实数k的取值范围是(﹣∞,﹣4)∪(1,+∞);
3)已知双曲线方程为x2 =1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是椭圆C: =1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案