精英家教网 > 高中数学 > 题目详情

【题目】“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )

A.分层抽样B.回归分析C.独立性检验D.频率分布直方图

【答案】C

【解析】

根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

本题考查“性别”对判断“人机大战是人类的胜利”这两个变量是否有关系,符合独立性检验的基本思想,因此,该题所选择的统计方法是独立性检验,故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若某产品的直径长与标准值的差的绝对值不超过时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:)将所得数据分组,得到如下频率分布表:

1)将上面表格中缺少的数据填充完整;

2)估计该厂生产的此种产品中,不合格的直径长与标准值的差落在区间内的概率

3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一个关于平面图形的命题:如图所示,同一平面内有两个边长都是a的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为,类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为__________.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=logaxgx)=m2x22mx+1,若ba1,且fbabba

1)求ab的值;

2)当x[01]时,函数gx)的图象与hx)=fx+1+m的图象仅有一个交点,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响

1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;

2)请分析比较甲、乙两人谁的面试通过的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一平面与空间四边形的对角线都平行,且交空间四边形的边分别于.

1)求证:四边形为平行四边形;

2)若是边的中点,,异面直线所成的角为60°,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1各条棱长均为4,且AA1⊥平面ABCDAA1的中点,MN分别在线段BB1和线段CC1上,且B1M3BMCN3C1N

1)证明:平面DMN⊥平面BB1C1C

2)求三棱锥B1DMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点处的切线方程;

2)若关于的方程有三个不同的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案