精英家教网 > 高中数学 > 题目详情

【题目】若函数y=f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上是减函数,则不等式f(lnx)<﹣f(1)的解集为(
A.(e,+∞)
B.( ,+∞)
C.( ,e)
D.(0,

【答案】B
【解析】解:函数y=f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上是减函数, ∴f(x)在(0,+∞)上也是减函数,故函数f(x)在R上单调递减.
不等式f(lnx)<﹣f(1),即不等式f(lnx)<f(﹣1),
∴lnx>﹣1,x>
故选:B.
【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在 中, .

(1)求 的面积之比;
(2)若 中点, 交于点 ,且 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】和谐高级中学共有学生570名,各班级人数如表:

一班

二班

三班

四班

高一

52

51

y

48

高二

48

x

49

47

高三

44

47

46

43

已知在全校学生中随机抽取1名,抽到高二年级学生的概率是
(1)求x,y的值;
(2)现用分层抽样的方法在全校抽取114名学生,应分别在各年级抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆拱桥的示意图如图所示,该圆拱的跨度AB是36 m,拱高OP是6 m,在建造时,每隔3 m需用一个支柱支撑,求支柱A2P2的长.(精确到0.01 m)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为 . (Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的不等式x2+(a﹣1)x+1≤0的解集为;命题q:方程 表示焦点在y轴上的椭圆;若命题q为真命题,p∨q为真命题.
(1)求实数a的取值范围;
(2)判断方程(a+1)x2+(1﹣a)y2=(a+1)(1﹣a)所表示的曲线的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足a1=3,Sn+1=3(Sn+1)(n∈N*). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)在数列{bn}中,b1=9,bn+1﹣bn=2(an+1﹣an)(n∈N*),若不等式λbn>an+36(n﹣4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;
(Ⅲ)令Tn= + + +…+ (n∈N*),证明:对于任意的n∈N* , Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市随机抽取一个月(30天)的空气质量指数API监测数据,统计结果如下:

API

[0,50]

(50,100]

(100,150]

(150,200]

(200,250]

(250,300]

(300,350]

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

2

4

5

9

4

3

3

(Ⅰ)根据以上数据估计该城市这30天空气质量指数API的平均值;
(Ⅱ)若该城市某企业因空气污染每天造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系式为:
S=
若在本月30天中随机抽取一天,试估计该天经济损失S大于200元且不超过600元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:


利用上述结果,计算:13+23+33+…+n3=

查看答案和解析>>

同步练习册答案