精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在三棱柱中.

(1)若,证明:平面平面
(2)设的中点,上的一点,
平面,求的值.
(1)略;(2)
解:(1)因为BB1=BC,所以侧面BCC1B1是菱形,所以B1CBC1.  
又因为B1CA1B,且A1BBC1=B,所以BC1⊥平面A1BC1, …………………5分
B1C平面AB1C,所以平面AB1C⊥平面A1BC1.……………………………6分
(2)设B1DBC1于点F,连结EF,则平面A1BC1∩平面B1DEEF
因为A1B//平面B1DEA1B平面A1BC1,所以A1B//EF.   …………………9分
所以
又因为,所以. ………………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPD=CDEPC的中点。

(1)证明PA平面BDE
(2)求二面角B-DE-C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?
证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面=1,那么直线与平面所成角的正弦值为 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, PA⊥平面ABCD,四边形ABCD是矩形,点E在边AB上,F为PD的中点,AF∥平面PCE,二面角P-CD-B为450,AD=2,CD=3.

(1)试确定E点位置; (2)求直线AF到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图所示,ABCD-A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.

(1)求证:BD1∥平面C1DE;
(2)求三棱锥D-D1BC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直三棱柱ABC—ABC中,分别为棱AC、AB上的动点(不包括端点),若则线段DF长度的取值范围为
A.    B.   C.     D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,点上运动,给出下列四个命题:
 
①三棱锥的体积不变; ②
∥平面;           ④平面
其中正确的命题个数有(    )                                                                            
A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

空间中直线与直线的位置关系有                        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

a、b是两条异面直线,A是不在a、b上的点,则下列结论成立的是(  )
A.过A有且只有一个平面平行于a、b
B.过A至少有一个平面平行于a、b
C.过A有无数个平面平行于a、b
D.过A且平行a、b的平面可能不存在

查看答案和解析>>

同步练习册答案