【题目】已知函数g(x)=a﹣x2( ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是 .
【答案】[1,e2﹣2]
【解析】解:由已知,得到方程a﹣x2=﹣2lnx﹣a=2lnx﹣x2在[ ,e]上有解. 设f(x)=2lnx﹣x2 , 求导得:f′(x)= ﹣2x= ,
∵ ≤x≤e,∴f′(x)=0在x=1有唯一的极值点,
∵f( )=﹣2﹣ ,f(e)=2﹣e2 , f(x)极大值=f(1)=﹣1,且知f(e)<f( ),
故方程﹣a=2lnx﹣x2在[ ,e]上有解等价于2﹣e2≤﹣a≤﹣1.
从而a的取值范围为[1,e2﹣2].
所以答案是:[1,e2﹣2]
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】持续性的雾霾天气严重威胁着人们的身体健康,汽车排放的尾气是造成雾霾天气的重要因素之一.为了贯彻落实国务院关于培育战略性新兴产业和加强节能减排工作的部署和要求,中央财政安排专项资金支持开展私人购买新能源汽车补贴试点.2017年国家又出台了调整新能源汽车推广应用财政补贴的新政策,其中新能源乘用车推广应用补贴标准如表: 某课题组从汽车市场上随机选取了20辆纯电动乘用车,根据其续驶里程R(单词充电后能行驶的最大里程,R∈[100,300])进行如下分组:第1组[100,150),第2组[150,200),第3组[200,250),第4组[250,300],制成如图所示的频率分布直方图.已知第1组与第3组的频率之比为1:4,第2组的频数为7.
纯电动续驶里程R(公里) | 100≤R<150 | 150≤R<250 | R>250 |
补贴标准(万元/辆) | 2 | 3.6 | 44 |
(1)请根据频率分布直方图统计这20辆纯电动乘用车的平均续驶里程;
(2)若以频率作为概率,设ξ为购买一辆纯电动乘用车获得的补贴,求ξ的分布列和数学期望E(ξ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】F是抛物线C:y2=4x的焦点,过F作两条斜率都存在且互相垂直的直线l1 , l2 , l1交抛物线C于点A,B,l2交抛物线C于点G,H,则 的最小值是( )
A.8
B.8
C.16
D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(Ⅰ)求证:AM⊥平面EBC;
(Ⅱ)求二面角A﹣EB﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2sin(2x+ )的图象向右平移 个单位,所得图象对应的函数( )
A.在区间[ , ]上单调递增
B.在区间[ , ]上单调递减
C.在区间[﹣ , ]上单调递增
D.在区间[﹣ , ]上单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2 , g(x)=alnx.
(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;
(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1 , x2 , 都有 >2恒成立,求实数a的取值范围;
(3)若在[1,e]上存在一点x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(﹣1, )是椭圆E: =1(a>b>0)上一点,F1 , F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A,B是椭圆E上两个动点,满足: (0<λ<4,且λ≠2),求直线AB的斜率.
(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究函数 f ( x )= ﹣ 的性质时,某同学受两点间距离公式启发,将f(x)变形为f(x)= ﹣ ,并给出关于函数f(x)以下五个描述:
①函数 f(x)的图象是中心对称图形;
②函数 f(x)的图象是轴对称图形;
③函数 f(x)在[0,6]上是增函数;
④函数 f(x)没有最大值也没有最小值;
⑤无论m为何实数,关于x的方程 f(x)﹣m=0都有实数根.
其中描述正确的是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f ( x )=sin(2x+ )+cos(2x+ )+2sin x cos x.
(Ⅰ)求函数 f ( x) 图象的对称轴方程;
(Ⅱ)将函数 y=f ( x) 的图象向右平移 个单位,再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数 y=g ( x) 的图象,求 y=g ( x) 在[ ,2π]上的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com