【题目】定义:已知函数f(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数f(x)在[m,n](m<n)上具有“DK”性质.例如函数 在[1,9]上就具有“DK”性质.
(1)判断函数f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性质?说明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性质,求a的取值范围.
【答案】
(1)解:∵f(x)=x2﹣2x+2,x∈[1,2],
对称轴x=1,开口向上.
当x=1时,取得最小值为f(1)=1,
∴f(x)min=f(1)=1≤1,
∴函数f(x)在[1,2]上具有“DK”性质
(2)解:g(x)=x2﹣ax+2,x∈[a,a+1],其图象的对称轴方程为 .
①当 ,即a≥0时, .
若函数g(x)具有“DK”性质,则有2≤a总成立,即a≥2.
②当 ,即﹣2<a<0时, .
若函数g(x)具有“DK”性质,则有 总成立,解得a无解.
③当 ,即a≤﹣2时,g(x)min=g(a+1)=a+3.
若函数g(x)具有“DK”性质,则有a+3≤a,解得a无解.
综上所述,若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性质,则a≥2
【解析】(1)直接根据新定义进行判断即可.(2)根据二次函数的性质,求出对称轴,对其进行讨论,根据新定义求解.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆过点A(2,1),离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知椭圆的左焦点为,直线与椭圆交于不同两点,(都在轴上方),且.
(ⅰ)若,求的面积;
(ⅱ)直线是否恒过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
平面直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:
(1)令,利用给出的参考数据求出关于的回归方程.(,精确到0.1)
参考数据:,,
其中,
(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需用用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,集合A={x|x<﹣2或3<x≤4},B={x|x2﹣2x﹣15≤0}.求:
(1)UA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱中,底面,底面是梯形,,,.
(1)求证:平面平面;
(2)在线段上是否存在一点,使平面,若存在,请确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节油降耗技术发行后生产甲产品过程中记录的产量 x (吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出 y 关于 x 的线性回归方程
(3)已知该厂技改前 100 吨甲产品的生产能耗为 90 吨标准煤,试根据(2)求出的线性回归方程,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com